Do you want to publish a course? Click here

Constraints on Cosmology and Gravity from the Dynamics of Voids

72   0   0.0 ( 0 )
 Added by Nico Hamaus
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Universe is mostly composed of large and relatively empty domains known as cosmic voids, whereas its matter content is predominantly distributed along their boundaries. The remaining material inside them, either dark or luminous matter, is attracted to these boundaries and causes voids to expand faster and to grow emptier over time. Using the distribution of galaxies centered on voids identified in the Sloan Digital Sky Survey and adopting minimal assumptions on the statistical motion of these galaxies, we constrain the average matter content $Omega_mathrm{m}=0.281pm0.031$ in the Universe today, as well as the linear growth rate of structure $f/b=0.417pm0.089$ at median redshift $bar{z}=0.57$, where $b$ is the galaxy bias ($68%$ C.L.). These values originate from a percent-level measurement of the anisotropic distortion in the void-galaxy cross-correlation function, $varepsilon = 1.003pm0.012$, and are robust to consistency tests with bootstraps of the data and simulated mock catalogs within an additional systematic uncertainty of half that size. They surpass (and are complementary to) existing constraints by unlocking cosmological information on smaller scales through an accurate model of nonlinear clustering and dynamics in void environments. As such, our analysis furnishes a powerful probe of deviations from Einsteins general relativity in the low-density regime which has largely remained untested so far. We find no evidence for such deviations in the data at hand.



rate research

Read More

Cosmic voids in the large-scale structure of the Universe affect the peculiar motions of objects in their vicinity. Although these motions are difficult to observe directly, the clustering pattern of their surrounding tracers in redshift space is influenced in a unique way. This allows to investigate the interplay between densities and velocities around voids, which is solely dictated by the laws of gravity. With the help of $N$-body simulations and derived mock-galaxy catalogs we calculate the average density fluctuations around voids identified with a watershed algorithm in redshift space and compare the results with the expectation from general relativity and the $Lambda$CDM model. We find linear theory to work remarkably well in describing the dynamics of voids. Adopting a Bayesian inference framework, we explore the full posterior of our model parameters and forecast the achievable accuracy on measurements of the growth rate of structure and the geometric distortion through the Alcock-Paczynski effect. Systematic errors in the latter are reduced from $sim15%$ to $sim5%$ when peculiar velocities are taken into account. The relative parameter uncertainties in galaxy surveys with number densities comparable to the SDSS MAIN (CMASS) sample probing a volume of $1h^{-3}{rm Gpc}^3$ yield $sigma_{f/b}left/(f/b)right.sim2%$ ($20%$) and $sigma_{D_AH}/D_AHsim0.2%$ ($2%$), respectively. At this level of precision the linear-theory model becomes systematics dominated, with parameter biases that fall beyond these values. Nevertheless, the presented method is highly model independent; its viability lies in the underlying assumption of statistical isotropy of the Universe.
In this article we investigate the properties of the FLRW flat cosmological models in which the cosmic expansion of the Universe is affected by a dilaton dark energy (Liouville scenario). In particular, we perform a detailed study of these models in the light of the latest cosmological data, which serves to illustrate the phenomenological viability of the new dark energy paradigm as a serious alternative to the traditional scalar field approaches. By performing a joint likelihood analysis of the recent supernovae type Ia data (SNIa), the differential ages of passively evolving galaxies, and the Baryonic Acoustic Oscillations (BAOs) traced by the Sloan Digital Sky Survey (SDSS), we put tight constraints on the main cosmological parameters. Furthermore, we study the linear matter fluctuation field of the above Liouville cosmological models. In this framework, we compare the observed growth rate of clustering measured with those predicted by the current Liouville models. Performing a chi^2 statistical test we show that the Liouville cosmological model provides growth rates that match sufficiently well with the observed growth rate. To further test the viability of the models under study, we use the Press-Schechter formalism to derive their expected redshift distribution of cluster-size halos that will be provided by future X-ray and Sunyaev-Zeldovich cluster surveys. We find that the Hubble flow differences between the Liouville and the LambdaCDM models provide a significantly different halo redshift distribution, suggesting that the models can be observationally distinguished.
A modification of the action of the general relativity produces a different pattern for the growth of the cosmic structures below a certain length-scale leaving an imprint on the cosmic microwave background (CMB) anisotropies. We re-examine the upper limits on the length-scale parameter B0 of f (R) models using the recent data from the Planck satellite experiment. We also investigate the combined constraints obtained when including the Hubble Space Telescope H0 measurement and the baryon acoustic oscillations measurements from the SDSS, WiggleZ and BOSS surveys.
199 - Tessa Baker 2017
The detection of an electromagnetic counterpart (GRB 170817A) to the gravitational wave signal (GW170817) from the merger of two neutron stars opens a completely new arena for testing theories of gravity. We show that this measurement allows us to place stringent constraints on general scalar-tensor and vector-tensor theories, while allowing us to place an independent bound on the graviton mass in bimetric theories of gravity. These constraints severely reduce the viable range of cosmological models that have been proposed as alternatives to general relativistic cosmology.
Bimetric gravity is a ghost-free and observationally viable extension of general relativity, exhibiting both a massless and a massive graviton. The observed abundances of light elements can be used to constrain the expansion history of the Universe at the period of Big Bang nucleosynthesis. Applied to bimetric gravity, we readily obtain constraints on the theory parameters which are complementary to other observational probes. For example, the mixing angle between the two gravitons must satisfy $theta lesssim 18^circ$ in the graviton mass range $m_mathrm{FP} gtrsim 10^{-16} , mathrm{eV}/c^2$, representing a factor of two improvement compared with other cosmological probes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا