No Arabic abstract
The incessant activity of swimming microorganisms has a direct physical effect on surrounding microscopic objects, leading to enhanced diffusion far beyond the level of Brownian motion with possible influences on the spatial distribution of non-motile planktonic species and particulate drifters. Here we study in detail the effect of eukaryotic flagellates, represented by the green microalga Chlamydomonas reinhardtii, on microparticles. Macro- and micro-scopic experiments reveal that microorganism-colloid interactions are dominated by rare close encounters leading to large displacements through direct entrainment. Simulations and theoretical modelling show that the ensuing particle dynamics can be understood in terms of a simple jump-diffusion process, combining standard diffusion with Poisson-distributed jumps. This heterogeneous dynamics is likely to depend on generic features of the near-field of swimming microorganisms with front-mounted flagella.
We investigate the effect of stress fluctuations on the stochastic dynamics of an inclusion embedded in a viscous gel. We show that, in non-equilibrium systems, stress fluctuations give rise to an effective attraction towards the boundaries of the confining domain, which is reminiscent of an active Casimir effect. We apply this generic result to the dynamics of deformations of the cell nucleus and we demonstrate the appearance of a fluctuation maximum at a critical level of activity, in agreement with recent experiments [E. Makhija, D. S. Jokhun, and G. V. Shivashankar, Proc. Natl. Acad. Sci. U.S.A. 113, E32 (2016)].
We calculate the mean shape of transition paths and first-passage paths based on the one-dimensional Fokker-Planck equation in an arbitrary free energy landscape including a general inhomogeneous diffusivity profile. The transition path ensemble is the collection of all paths that do not revisit the start position $x_A$ and that terminate when first reaching the final position $x_B$. In contrast, a first-passage path can revisit but not cross its start position $x_A$ before it terminates at $x_B$. Our theoretical framework employs the forward and backward Fokker-Planck equations as well as first-passage, passage, last-passage and transition-path time distributions, for which we derive the defining integral equations. We show that the mean time at which the transition path ensemble visits an intermediate position $x$ is equivalent to the mean first-passage time of reaching the starting position $x_A$ from $x$ without ever visiting $x_B$. The mean shape of first-passage paths is related to the mean shape of transition paths by a constant time shift. Since for large barrier height $U$ the mean first-passage time scales exponentially in $U$ while the mean transition path time scales linearly inversely in $U$, the time shift between first-passage and transition path shapes is substantial. We present explicit examples of transition path shapes for linear and harmonic potentials and illustrate our findings by trajectories generated from Brownian dynamics simulations.
We study collections of self-propelled rods (SPR) moving in two dimensions for packing fractions less than or equal to 0.3. We find that in the thermodynamical limit the SPR undergo a phase transition between a disordered gas and a novel phase-separated system state. Interestingly, (global) orientational order patterns -- contrary to what has been suggested -- vanish in this limit. In the found novel state, the SPR self-organize into a highly dynamical, high-density, compact region - which we call aggregate - which is surrounded by a disordered gas. Active stresses build inside aggregates as result of the combined effect of local orientational order and active forces. This leads to the most distinctive feature of these aggregates: constant ejection of polar clusters of SPR. This novel phase-separated state represents a novel state of matter characterized by large fluctuations in volume and shape, related to mass ejection, and exhibits positional as well as orientational local order. SPR systems display new physics unseen in other active matter systems due to the coupling between density, active stresses, and orientational order (such coupling cannot be reduced simply to a coupling between speed and density).
A stochastic version of the Barkai-Leibler model of chemotaxis receptors in {it E. coli} is studied here to elucidate the effects of intrinsic network noise in their conformational dynamics. It was originally proposed to explain the robust and near-perfect adaptation of {it E. coli} observed across a wide range of spatially uniform attractant/repellent (ligand) concentrations. A receptor is either active or inactive and can stochastically switch between the two states. Enzyme CheR methylates inactive receptors while CheB demethylates active ones and the probability for it to be active depends on its level of methylation and ligandation. A simple version of the model with two methylation sites per receptor (M=2) shows zero-order ultrasensitivity (ZOU) akin to the classical 2-state model of covalent modification studied by Goldbeter and Koshland (GK). For extremely small and large ligand concentrations, the system reduces to two 2-state GK modules. A quantitative measure of the spontaneous fluctuations in activity (variance) estimated mathematically under linear noise approximation (LNA) is found to peak near the ZOU transition. The variance is a weak, non-monotonic and decreasing functions of ligand and receptor concentrations. Gillespie simulations for M=2 show excellent agreement with analytical results obtained under LNA. Numerical results for M=2, 3 and 4 show ZOU in mean activity; the variance is found to be smaller for larger M. The magnitude of receptor noise deduced from available experimental data is consistent with our predictions. A simple analysis of the downstream signaling pathway shows that this noise is large enough to have a beneficial effect on the motility of the organism. The response of mean receptor activity to small time-dependent changes in the external ligand concentration, computed within linear response theory, is found to have a bilobe form.
Unicellular microscopic organisms living in aqueous environments outnumber all other creatures on Earth. A large proportion of them are able to self-propel in fluids with a vast diversity of swimming gaits and motility patterns. In this paper we present a biophysical survey of the available experimental data produced to date on the characteristics of motile behaviour in unicellular microswimmers. We assemble from the available literature empirical data on the motility of four broad categories of organisms: bacteria (and archaea), flagellated eukaryotes, spermatozoa and ciliates. Whenever possible, we gather the following biological, morphological, kinematic and dynamical parameters: species, geometry and size of the organisms, swimming speeds, actuation frequencies, actuation amplitudes, number of flagella and properties of the surrounding fluid. We then organise the data using the established fluid mechanics principles for propulsion at low Reynolds number. Specifically, we use theoretical biophysical models for the locomotion of cells within the same taxonomic groups of organisms as a means of rationalising the raw material we have assembled, while demonstrating the variability for organisms of different species within the same group. The material gathered in our work is an attempt to summarise the available experimental data in the field, providing a convenient and practical reference point for future studies.