Do you want to publish a course? Click here

Spectral radius and Hamiltonicity of graphs with large minimum degree

95   0   0.0 ( 0 )
 Added by Vladimir Nikiforov
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

This paper presents sufficient conditions for Hamiltonian paths and cycles in graphs. Letting $lambdaleft( Gright) $ denote the spectral radius of the adjacency matrix of a graph $G,$ the main results of the paper are: (1) Let $kgeq1,$ $ngeq k^{3}/2+k+4,$ and let $G$ be a graph of order $n$, with minimum degree $deltaleft( Gright) geq k.$ If [ lambdaleft( Gright) geq n-k-1, ] then $G$ has a Hamiltonian cycle, unless $G=K_{1}vee(K_{n-k-1}+K_{k})$ or $G=K_{k}vee(K_{n-2k}+overline{K}_{k})$. (2) Let $kgeq1,$ $ngeq k^{3}/2+k^{2}/2+k+5,$ and let $G$ be a graph of order $n$, with minimum degree $deltaleft( Gright) geq k.$ If [ lambdaleft( Gright) geq n-k-2, ] then $G$ has a Hamiltonian path, unless $G=K_{k}vee(K_{n-2k-1}+overline {K}_{k+1})$ or $G=K_{n-k-1}+K_{k+1}$ In addition, it is shown that in the above statements, the bounds on $n$ are tight within an additive term not exceeding $2$.



rate research

Read More

Let $G$ be a simple graph with maximum degree $Delta(G)$. A subgraph $H$ of $G$ is overfull if $|E(H)|>Delta(G)lfloor |V(H)|/2 rfloor$. Chetwynd and Hilton in 1985 conjectured that a graph $G$ with $Delta(G)>|V(G)|/3$ has chromatic index $Delta(G)$ if and only if $G$ contains no overfull subgraph. The 1-factorization conjecture is a special case of this overfull conjecture, which states that for even $n$, every regular $n$-vertex graph with degree at least about $n/2$ has a 1-factorization and was confirmed for large graphs in 2014. Supporting the overfull conjecture as well as generalizing the 1-factorization conjecture in an asymptotic way, in this paper, we show that for any given $0<varepsilon <1$, there exists a positive integer $n_0$ such that the following statement holds: if $G$ is a graph on $2nge n_0$ vertices with minimum degree at least $(1+varepsilon)n$, then $G$ has chromatic index $Delta(G)$ if and only if $G$ contains no overfull subgraph.
In this paper, we present a spectral sufficient condition for a graph to be Hamilton-connected in terms of signless Laplacian spectral radius with large minimum degree.
Given a simple graph $G$, denote by $Delta(G)$, $delta(G)$, and $chi(G)$ the maximum degree, the minimum degree, and the chromatic index of $G$, respectively. We say $G$ is emph{$Delta$-critical} if $chi(G)=Delta(G)+1$ and $chi(H)le Delta(G)$ for every proper subgraph $H$ of $G$; and $G$ is emph{overfull} if $|E(G)|>Delta lfloor |V(G)|/2 rfloor$. Since a maximum matching in $G$ can have size at most $lfloor |V(G)|/2 rfloor$, it follows that $chi(G) = Delta(G) +1$ if $G$ is overfull. Conversely, let $G$ be a $Delta$-critical graph. The well known overfull conjecture of Chetwynd and Hilton asserts that $G$ is overfull provided $Delta(G) > |V(G)|/3$. In this paper, we show that any $Delta$-critical graph $G$ is overfull if $Delta(G) - 7delta(G)/4ge(3|V(G)|-17)/4$.
The degree-based entropy of a graph is defined as the Shannon entropy based on the information functional that associates the vertices of the graph with the corresponding degrees. In this paper, we study extremal problems of finding the graphs attaining the minimum degree-based graph entropy among graphs and bipartite graphs with a given number of vertices and edges. We characterize the unique extremal graph achieving the minimum value among graphs with a given number of vertices and edges and present a lower bound for the degree-based entropy of bipartite graphs and characterize all the extremal graphs which achieve the lower bound. This implies the known result due to Cao et al. (2014) that the star attains the minimum value of the degree-based entropy among trees with a given number of vertices.
Let $vec{T}_k$ be the transitive tournament on $k$ vertices. We show that every oriented graph on $n=4m$ vertices with minimum total degree $(11/12+o(1))n$ can be partitioned into vertex disjoint $vec{T}_4$s, and this bound is asymptotically tight. We also improve the best known bound on the minimum total degree for partitioning oriented graphs into vertex disjoint $vec{T}_k$s.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا