Do you want to publish a course? Click here

The weakening of fermionization of one dimensional spinor Bose gases induced by spin-exchange interaction

76   0   0.0 ( 0 )
 Added by Yajiang Hao
 Publication date 2016
  fields Physics
and research's language is English
 Authors Yajiang Hao




Ask ChatGPT about the research

We investigate the ground state density distributions of anti-ferromagnetic spin-1 Bose gases in one dimensional harmonic potential in the full interacting regimes. The ground state is obtained by diagonalizing the Hamiltonian in the Hilbert space composed of the lowest eigenstates of noninteracting Bose gas and spin components. The study reveals that in the situation of weak spin-dependent interaction the total density profiles evolve from Gaussian-like distribution to a Fermi-like shell structure of $N$ peaks with the increasing of spin-independent interaction. While the increasing spin-exchange interaction always weaken the fermionization of density distribution such that the total density profiles show shell structure of less peaks and even show single peak structure in the limit of strong spin-exchange interaction. The weakening of fermionization results from the formation of composite atoms induced by spin-exchange interaction. It is also shown that phase separation occurs for the spinor Bose gas with weak spin-exchange interaction, meanwhile strong spin-independent interaction.



rate research

Read More

Dynamical fermionization refers to the phenomenon in Tonks-Girardeau (TG) gases where, upon release from harmonic confinement, the gass momentum density profile evolves asymptotically to that of an ideal Fermi gas in the initial trap. This phenomenon has been demonstrated theoretically in hardcore and anyonic TG gases, and recently experimentally observed in a strongly interacting Bose gas. We extend this study to a one dimensional (1D) spinor gas of arbitrary spin in the strongly interacting regime, and analytically prove that the total momentum distribution after the harmonic trap is turned off approaches that of a spinless ideal Fermi gas, while the asymptotic momentum distribution of each spin component takes the same shape of the initial real space density profile of that spin component. Our work demonstrates the rich physics arising from the interplay between the spin and the charge degrees of freedom in a spinor system.
168 - Bess Fang 2013
We measure the position- and momentum- space breathing dynamics of trapped one-dimensional Bose gases. The profile in real space reveals sinusoidal width oscillations whose frequency varies continuously through the quasicondensate to ideal Bose gas crossover. A comparison with theoretical models taking into account the effect of finite temperature is provided. In momentum space, we report the first observation of a frequency doubling in the quasicondensate regime, corresponding to a self-reflection mechanism. The disappearance of this mechanism through the quasicondensation crossover is mapped out.
We study cold dilute gases made of bosonic atoms, showing that in the mean-field one-dimensional regime they support stable out-of-equilibrium states. Starting from the 3D Boltzmann-Vlasov equation with contact interaction, we derive an effective 1D Landau-Vlasov equation under the condition of a strong transverse harmonic confinement. We investigate the existence of out-of-equilibrium states, obtaining stability criteria similar to those of classical plasmas.
107 - Yajiang Hao 2016
We investigate the ground state properties of anti-ferromagnetic spin-1 Bose gases in one dimensional harmonic potential from the weak repulsion regime to the strong repulsion regime. By diagonalizing the Hamiltonian in the Hilbert space composed of the lowest eigenstates of single particle and spin components, the ground state wavefunction and therefore the density distributions, magnetization distribution, one body density matrix, and momentum distribution for each components are obtained. It is shown that the spinor Bose gases of different magnetization exhibit the same total density profiles in the full interaction regime, which evolve from the single peak structure embodying the properties of Bose gases to the fermionized shell structure of spin-polarized fermions. But each components display different density profiles, and magnetic domains emerge in the strong interaction limit for $M=0.25$. In the strong interaction limit, one body density matrix and the momentum distributions exhibit the same behaviours as those of spin-polarized fermions. The fermionization of momentum distribution takes place, in contrast to the $delta$-function-like distribution of single component Bose gases in the full interaction region.
We consider a one-dimensional trapped spin-1 Bose gas and numerically explore families of its solitonic solutions, namely antidark-dark-antidark (ADDAD), as well as dark-antidark-dark (DADD) solitary waves. Their existence and stability properties are systematically investigated within the experimentally accessible easy-plane ferromagnetic phase by means of a continuation over the atom number as well as the quadratic Zeeman energy. It is found that ADDADs are substantially more dynamically robust than DADDs. The latter are typically unstable within the examined parameter range. The dynamical evolution of both of these states is explored and the implication of their potential unstable evolution is studied. Some of the relevant observed possibilities involve, e.g., symmetry-breaking instability manifestations for the ADDAD, as well as splitting of the DADD into a right- and a left-moving dark-antidark pair with the anti-darks residing in a different component as compared to prior to the splitting. In the latter case, the structures are seen to disperse upon long-time propagation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا