Do you want to publish a course? Click here

Are all classical superintegrable systems in two-dimensional space linearizable?

130   0   0.0 ( 0 )
 Added by M. C. Nucci
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Several examples of classical superintegrable systems in two-dimensional spac are shown to possess hidden symmetries leading to their linearization. They are those determined 50 years ago in [Phys. Lett. 13, 354 (1965)], and the more recent Tremblay-Turbiner-Winternitz system [J. Phys. A: Math. Theor. 42, 242001 (2009)]. We conjecture that all classical superintegrable systems in two-dimensional space have hidden symmetries that make them linearizable.



rate research

Read More

180 - F. Gungor , S Kuru , J. Negro 2014
Heisenberg-type higher order symmetries are studied for both classical and quantum mechanical systems separable in cartesian coordinates. A few particular cases of this type of superintegrable systems were already considered in the literature, but here they are characterized in full generality together with their integrability properties. Some of these systems are defined only in a region of $mathbb R^n$, and in general they do not include bounded solutions. The quantum symmetries and potentials are shown to reduce to their superintegrable classical analogs in the $hbar to0$ limit.
Quasiclassical approximation in the intrinsic description of the vortex filament dynamics is discussed. Within this approximation the governing equations are given by elliptic system of quasi-linear PDEs of the first order. Dispersionless Da Rios system and dispersionless Hirota equation are among them. They describe motion of vortex filament with slow varying curvature and torsion without or with axial flow. Gradient catastrophe for governing equations is studied. It is shown that geometrically this catastrophe manifests as a fast oscillation of a filament curve around the rectifying plane which resembles the flutter of airfoils. Analytically it is the elliptic umbilic singularity in the terminology of the catastrophe theory. It is demonstrated that its double scaling regularization is governed by the Painleve I equation.
We exploit mappings between quantum and classical systems in order to obtain a class of two-dimensional classical systems with critical properties equivalent to those of the class of one-dimensional quantum systems discussed in a companion paper (J. Hutchinson, J. P. Keating, and F. Mezzadri, arXiv:1503.05732). In particular, we use three approaches: the Trotter-Suzuki mapping; the method of coherent states; and a calculation based on commuting the quantum Hamiltonian with the transfer matrix of a classical system. This enables us to establish universality of certain critical phenomena by extension from the results in our previous article for the classical systems identified.
It is shown that the symmetry algebra of quantum superintegrable system can be always chosen to be u(N),N being the number of degrees of freedom.
In this letter, we construct new meshy soliton structures by using two concrete (2+1)-dimensional integrable systems. The explicit expressions based on corresponding Cole-Hopf type transformations are obtained. Constraint equation ft+sum_{j=1}^{N} h_j(y)f_{jx} = 0 shows that these meshy soliton structures can be linear or parabolic. Interaction between meshy soliton structure and Lump structure are also revealed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا