Do you want to publish a course? Click here

Calibration scheme for large Kinetic Inductance Detector Arrays based on Readout Frequency Response

87   0   0.0 ( 0 )
 Added by Laura Bisigello
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Microwave kinetic inductance detector (MKID) provides a way to build large ground based sub-mm instruments such as NIKA and A-MKID. For such instruments, therefore, it is important to understand and characterize the response to ensure good linearity and calibration over wide dynamic range. We propose to use the MKID readout frequency response to determine the MKID responsivity to an input optical source power. A signal can be measured in a KID as a change in the phase of the readout signal with respect to the KID resonant circle. Fundamentally, this phase change is due to a shift in the KID resonance frequency, in turn due to a radiation induced change in the quasiparticle number in the superconducting resonator. We show that shift in resonant frequency can be determined from the phase shift by using KID phase versus frequency dependence using a previously measured resonant frequency. Working in this calculated resonant frequency, we gain near linearity and constant calibration to a constant optical signal applied in a wide range of operating points on the resonance and readout powers. This calibration method has three particular advantages: first, it is fast enough to be used to calibrate large arrays, with pixel counts in the thousand of pixels; second, it is based on data that are already necessary to determine KID positions; third, it can be done without applying any optical source in front of the array.



rate research

Read More

Microwave Kinetic Inductance Detectors (MKIDs) have great potential for large very sensitive detector arrays for use in, for example, sub-mm imaging. Being intrinsically readout in the frequency domain, they are particularly suited for frequency domain multiplexing allowing $sim$1000s of devices to be readout with one pair of coaxial cables. However, this moves the complexity of the detector from the cryogenics to the warm electronics. We present here the concept and experimental demonstration of the use of Fast Fourier Transform Spectrometer (FFTS) readout, showing no deterioration of the noise performance compared to low noise analog mixing while allowing high multiplexing ratios.
We present an analysis of the optical response of lumped-element kinetic-inductance detector arrays, based on the NIKA2 1mm array. This array has a dual-polarization sensitive Hilbert inductor for directly absorbing incident photons. We present the optical response calculated from a transmission line model, simulated with HFSS and measured using a Fourier transform spectrometer. We have estimated the energy absorbed by individual component of a pixel, such as the inductor. The difference between the absorption efficiencies is expected to be 20% from the simulations. The Fourier-transform spectroscopy measurement, performed on the actual NIKA2 arrays, validates our simulations. We discuss several possible ways to increase the absorption efficiency. This analysis can be used for optimization of the focal plane layout and can be extended to other kinetic inductance detector array designs in millimeter, sub-millimeter and terahertz frequency bands.
A substantial amount of important scientific information is contained within astronomical data at the submillimeter and far-infrared (FIR) wavelengths, including information regarding dusty galaxies, galaxy clusters, and star-forming regions; however, these wavelengths are among the least-explored fields in astronomy because of the technological difficulties involved in such research. Over the past 20 years, considerable efforts have been devoted to developing submillimeter- and millimeter-wavelength astronomical instruments and telescopes. The number of detectors is an important property of such instruments and is the subject of the current study. Future telescopes will require as many as hundreds of thousands of detectors to meet the necessary requirements in terms of the field of view, scan speed, and resolution. A large pixel count is one benefit of the development of multiplexable detectors that use kinetic inductance detector (KID) technology. This paper presents the development of all aspects of the readout electronics for a KID-based instrument, which enabled one of the largest detector counts achieved to date in submillimeter-/millimeter-wavelength imaging arrays: a total of 2304 detectors. The work presented in this paper had been implemented in the MUltiwavelength Submillimeter Inductance Camera (MUSIC), a instrument for the Caltech Submillimeter Observatory (CSO) between 2013 and 2015.
Microwave Kinetic Inductance Detectors (MKID) are a promising solution for spaceborne mm-wave astronomy. To optimize their design and make them insensitive to the ballistic phonons created by cosmic-ray interactions in the substrate, the phonon propagation in silicon must be studied. A dedicated fast readout electronics, using channelized Digital Down Conversion for monitoring up to 12 MKIDs over a 100MHz bandwidth was developed. Thanks to the fast ADC sampling and steep digital filtering, In-phase and Quadrature samples, having a high dynamic range, are provided at ~2 Msps. This paper describes the technical solution chosen and the results obtained.
105 - K. Karatsu , A. Endo , J. Bueno 2019
For space observatories, the glitches caused by high energy phonons created by the interaction of cosmic ray particles with the detector substrate lead to dead time during observation. Mitigating the impact of cosmic rays is therefore an important requirement for detectors to be used in future space missions. In order to investigate possible solutions, we carry out a systematic study by testing four large arrays of Microwave Kinetic Inductance Detectors (MKIDs), each consisting of $sim$960 pixels and fabricated on monolithic 55 mm $times$ 55 mm $times$ 0.35 mm Si substrates. We compare the response to cosmic ray interactions in our laboratory for different detector arrays: A standard array with only the MKID array as reference; an array with a low $T_c$ superconducting film as phonon absorber on the opposite side of the substrate; and arrays with MKIDs on membranes. The idea is that the low $T_c$ layer down-converts the phonon energy to values below the pair breaking threshold of the MKIDs, and the membranes isolate the sensitive part of the MKIDs from phonons created in the substrate. We find that the dead time can be reduced up to a factor of 40 when compared to the reference array. Simulations show that the dead time can be reduced to below 1 % for the tested detector arrays when operated in a spacecraft in an L2 or a similar far-Earth orbit. The technique described here is also applicable and important for large superconducting qubit arrays for future quantum computers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا