No Arabic abstract
The two degenerate ground states of the anisotropic Heisenberg (XY) spin model of a chain of qubits (pseudo-spins) can encode quantum information, but their degree of protection against local perturbations is known to be only partial. We examine the properties of the system in the presence of non-local spin-spin interactions, possibly emerging from the quantum electrodynamics of the device. We find a phase distinct from the XY phase admitting two ground states which are highly protected against all local field perturbations, persisting across a range of parameters. In the context of the XY chain we discuss how the coupling between two ground states can be used to observe signatures of topological edge states in a small controlled chain of superconducting transmon qubits.
Motivated by recent developments on the fabrication and control of semiconductor-based quantum dot qubits, we theoretically study a finite system of tunnel-coupled quantum dots with the electrons interacting through the long-range Coulomb interaction. When the inter-electron separation is large and the quantum dot confinement potential is weak, the system behaves as an effective Wigner crystal with a period determined by the electron average density with considerable electron hopping throughout the system. For stronger periodic confinement potentials, however, the system makes a crossover to a Mott-type strongly correlated ground state where the electrons are completely localized at the individual dots with little inter-dot tunneling. In between these two phases, the system is essentially a strongly correlated electron liquid with inter-site electron hopping constrained by strong Coulomb interaction. We characterize this Wigner-Mott-liquid quantum crossover with detailed numerical finite-size diagonalization calculations of the coupled interacting qubit system, showing that these phases can be smoothly connected by tuning the system parameters. Experimental feasibility of observing such a hopping-tuned Wigner-Mott-liquid crossover in currently available semiconductor quantum dot qubits is discussed. In particular, we connect our theoretical results to recent quantum-dot-based quantum emulation experiments where collective Coulomb blockade was demonstrated. One conclusion of our theory is that currently available realistic quantum dot arrays are unable to explore the low-density Wigner phase with only the Mott-liquid crossover being accessible experimentally.
We theoretically study single and two-qubit dynamics in the circuit QED architecture. We focus on the current experimental design [Wallraff et al., Nature 431, 162 (2004); Schuster et al., Nature 445, 515 (2007)] in which superconducting charge qubits are capacitively coupled to a single high-Q superconducting coplanar resonator. In this system, logical gates are realized by driving the resonator with microwave fields. Advantages of this architecture are that it allows for multi-qubit gates between non-nearest qubits and for the realization of gates in parallel, opening the possibility of fault-tolerant quantum computation with superconduting circuits. In this paper, we focus on one and two-qubit gates that do not require moving away from the charge-degeneracy `sweet spot. This is advantageous as it helps to increase the qubit dephasing time and does not require modification of the original circuit QED. However these gates can, in some cases, be slower than those that do not use this constraint. Five types of two-qubit gates are discussed, these include gates based on virtual photons, real excitation of the resonator and a gate based on the geometric phase. We also point out the importance of selection rules when working at the charge degeneracy point.
We present theory and calculations for coherent high-fidelity quantum control of many-particle states in semiconductor quantum wells. We show that coupling a two-electron double quantum dot to a terahertz optical source enables targeted excitations that are one to two orders of magnitude faster and significantly more accurate than those obtained with electric gates. The optical fields subject to physical constraints are obtained through quantum optimal control theory that we apply in conjunction with the numerically exact solution of the time-dependent Schrodinger equation. Our ability to coherently control arbitrary two-electron states, and to maximize the entanglement, opens up further perspectives in solid-state quantum information.
Quantum phase transitions are ubiquitous in many exotic behaviors of strongly-correlated materials. However the microscopic complexity impedes their quantitative understanding. Here, we observe thoroughly and comprehend the rich strongly-correlated physics in two profoundly dissimilar regimes of quantum criticality. With a circuit implementing a quantum simulator for the three-channel Kondo model, we reveal the universal scalings toward different low-temperature fixed points and along the multiple crossovers from quantum criticality. Notably, an unanticipated violation of the maximum conductance for ballistic free electrons is uncovered. The present charge pseudospin implementation of a Kondo impurity opens access to a broad variety of strongly-correlated phenomena.
Radiation sensors based on the heating effect of the absorbed radiation are typically relatively simple to operate and flexible in terms of the input frequency. Consequently, they are widely applied, for example, in gas detection, security, THz imaging, astrophysical observations, and medical applications. A new spectrum of important applications is currently emerging from quantum technology and especially from electrical circuits behaving quantum mechanically. This circuit quantum electrodynamics (cQED) has given rise to unprecedented single-photon detectors and a quantum computer supreme to the classical supercomputers in a certain task. Thermal sensors are appealing in enhancing these devices since they are not plagued by quantum noise and are smaller, simpler, and consume about six orders of magnitude less power than the commonly used traveling-wave parametric amplifiers. However, despite great progress in the speed and noise levels of thermal sensors, no bolometer to date has proven fast and sensitive enough to provide advantages in cQED. Here, we experimentally demonstrate a bolometer surpassing this threshold with a noise equivalent power of $30, rm{zW}/sqrt{rm{Hz}}$ on par with the current record while providing two-orders of magnitude shorter thermal time constant of 500 ns. Importantly, both of these characteristic numbers have been measured directly from the same device, which implies a faithful estimation of the calorimetric energy resolution of a single 30-GHz photon. These improvements stem from the utilization of a graphene monolayer as the active material with extremely low specific heat. The minimum demonstrated time constant of 200 ns falls greatly below the state-of-the-art dephasing times of roughly 100 {mu}s for superconducting qubits and meets the timescales of contemporary readout schemes thus enabling the utilization of thermal detectors in cQED.