Do you want to publish a course? Click here

Lymphangiogenesis and carcinoma in the uterine cervix: Joint and hierarchical models for random cluster sizes and continuous outcomes

46   0   0.0 ( 0 )
 Added by T. R. Fanshawe
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Although the lymphatic system is clearly linked to the metastasis of most human carcinomas, the mechanisms by which lymphangiogenesis occurs in response to the presence of carcinoma remain unclear. Hierarchical models are presented to investigate the properties of lymphatic vessel production in 2997 fields taken from 20 individuals with invasive carcinoma, 21 individuals with cervical intraepithelial neoplasia and 21 controls. Such data demonstrate a high degree of correlation within tumour samples from the same individual. Joint hierarchical models utilising shared random effects are discussed and fitted in a Bayesian framework to allow for the correlation between two key outcome measures: a random cluster size (the number of lymphatic vessels in a tissue sample) and a continuous outcome (vessel size). Results show that invasive carcinoma samples are associated with increased production of smaller and more irregularly-shaped lymphatic vessels and suggest a mechanistic link between carcinoma of the cervix and lymphangiogenesis.



rate research

Read More

Continuous-time assessments of game outcomes in sports have become increasingly common in the last decade. In American football, only discrete-time estimates of play value were possible, since the most advanced public football datasets were recorded at the play-by-play level. While measures such as expected points and win probability are useful for evaluating football plays and game situations, there has been no research into how these values change throughout the course of a play. In this work, we make two main contributions: First, we introduce a general framework for continuous-time within-play valuation in the National Football League using player-tracking data. Our modular framework incorporates several modular sub-models, to easily incorporate recent work involving player tracking data in football. Second, we use a long short-term memory recurrent neural network to construct a ball-carrier model to estimate how many yards the ball-carrier is expected to gain from their current position, conditional on the locations and trajectories of the ball-carrier, their teammates and opponents. Additionally, we demonstrate an extension with conditional density estimation so that the expectation of any measure of play value can be calculated in continuous-time, which was never before possible at such a granular level.
Studying the determinants of adverse pregnancy outcomes like stillbirth and preterm birth is of considerable interest in epidemiology. Understanding the role of both individual and community risk factors for these outcomes is crucial for planning appropriate clinical and public health interventions. With this goal, we develop geospatial mixed effects logistic regression models for adverse pregnancy outcomes. Our models account for both spatial autocorrelation and heterogeneity between neighborhoods. To mitigate the low incidence of stillbirth and preterm births in our data, we explore using class rebalancing techniques to improve predictive power. To assess the informative value of the covariates in our models, we use posterior distributions of their coefficients to gauge how well they can be distinguished from zero. As a case study, we model stillbirth and preterm birth in the city of Philadelphia, incorporating both patient-level data from electronic health records (EHR) data and publicly available neighborhood data at the census tract level. We find that patient-level features like self-identified race and ethnicity were highly informative for both outcomes. Neighborhood-level factors were also informative, with poverty important for stillbirth and crime important for preterm birth. Finally, we identify the neighborhoods in Philadelphia at highest risk of stillbirth and preterm birth.
We present modified Wang-Landau algorithm for models with continuous degrees of freedom. We demonstrate this algorithm with the calculation of the joint density of states $g(M,E)$ of ferromagnet Heisenberg models. The joint density of states contains more information than the density of states of a single variable--energy, but is also much more time-consuming to calculate. We discuss the strategies to perform this calculation efficiently for models with several thousand degrees of freedom, much larger than other continuous models studied previously with the Wang-Landau algorithm.
Evidence for Action (E4A), a signature program of the Robert Wood Johnson Foundation, funds investigator-initiated research on the impacts of social programs and policies on population health and health inequities. Across thousands of letters of intent and full proposals E4A has received since 2015, one of the most common methodological challenges faced by applicants is selecting realistic effect sizes to inform power and sample size calculations. E4A prioritizes health studies that are both (1) adequately powered to detect effect sizes that may reasonably be expected for the given intervention and (2) likely to achieve intervention effects sizes that, if demonstrated, correspond to actionable evidence for population health stakeholders. However, little guidance exists to inform the selection of effect sizes for population health research proposals. We draw on examples of five rigorously evaluated population health interventions. These examples illustrate considerations for selecting realistic and actionable effect sizes as inputs to power and sample size calculations for research proposals to study population health interventions. We show that plausible effects sizes for population health inteventions may be smaller than commonly cited guidelines suggest. Effect sizes achieved with population health interventions depend on the characteristics of the intervention, the target population, and the outcomes studied. Population health impact depends on the proportion of the population receiving the intervention. When adequately powered, even studies of interventions with small effect sizes can offer valuable evidence to inform population health if such interventions can be implemented broadly. Demonstrating the effectiveness of such interventions, however, requires large sample sizes.
82 - Linda S. L. Tan 2014
Discrete choice models describe the choices made by decision makers among alternatives and play an important role in transportation planning, marketing research and other applications. The mixed multinomial logit (MMNL) model is a popular discrete choice model that captures heterogeneity in the preferences of decision makers through random coefficients. While Markov chain Monte Carlo methods provide the Bayesian analogue to classical procedures for estimating MMNL models, computations can be prohibitively expensive for large datasets. Approximate inference can be obtained using variational methods at a lower computational cost with competitive accuracy. In this paper, we develop variational methods for estimating MMNL models that allow random coefficients to be correlated in the posterior and can be extended easily to large-scale datasets. We explore three alternatives: (1) Laplace variational inference, (2) nonconjugate variational message passing and (3) stochastic linear regression. Their performances are compared using real and simulated data. To accelerate convergence for large datasets, we develop stochastic variational inference for MMNL models using each of the above alternatives. Stochastic variational inference allows data to be processed in minibatches by optimizing global variational parameters using stochastic gradient approximation. A novel strategy for increasing minibatch sizes adaptively within stochastic variational inference is proposed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا