Gapless Andreev bound states in the quantum spin Hall insulator HgTe


Abstract in English

In recent years, Majorana physics has attracted considerable attention in both theoretical and experimental studies due to exotic new phenomena and its prospects for fault-tolerant topological quantum computation. To this end, one needs to engineer the interplay between superconductivity and electronic properties in a topological insulator, but experimental work remains scarce and ambiguous. Here we report experimental evidence for topological superconductivity induced in a HgTe quantum well, a two-dimensional topological insulator that exhibits the quantum spin Hall effect. The ac Josephson effect demonstrates that the supercurrent has a $4pi$-periodicity with the superconducting phase difference as indicated by a doubling of the voltage step for multiple Shapiro steps. In addition, an anomalous SQUID-like response to a perpendicular magnetic field shows that this $4pi$-periodic supercurrent originates from states located on the edges of the junction. Both features appear strongest when the sample is gated towards the quantum spin Hall regime, thus providing evidence for induced topological superconductivity in the quantum spin Hall edge states.

Download