Do you want to publish a course? Click here

Why are rapidly rotating M dwarfs in the Pleiades so (infra)red? New period measurements confirm rotation-dependent color offsets from the cluster sequence

103   0   0.0 ( 0 )
 Added by Kevin Covey
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Stellar rotation periods measured in open clusters have proved to be extremely useful for studying stars angular momentum content and rotationally driven magnetic activity, which are both age- and mass-dependent processes. While period measurements have been obtained for hundreds of solar-mass members of the Pleiades, period measurements exist for only a few low-mass ($<$0.5 M$_{odot}$) members of this key laboratory for stellar evolution theory. To fill this gap, we report rotation periods for 132 low-mass Pleiades members (including nearly 100 with M $leq$ 0.45 M$_{odot}$), measured from photometric monitoring of the cluster conducted by the Palomar Transient Factory in late 2011 and early 2012. These periods extend the portrait of stellar rotation at 125 Myr to the lowest-mass stars and re-establish the Pleiades as a key benchmark for models of the transport and evolution of stellar angular momentum. Combining our new rotation periods with precise BVIJHK photometry reported by Stauffer et al. and Kamai et al., we investigate known anomalies in the photometric properties of K and M Pleiades members. We confirm the correlation detected by Kamai et al. between a stars rotation period and position relative to the main sequence in the clusters color-magnitude diagram. We find that rapid rotators have redder (V-K) colors than slower rotators at the same V, indicating that rapid and slow rotators have different binary frequencies and/or photospheric properties. We find no difference in the photometric amplitudes of rapid and slow rotators, indicating that asymmetries in the longitudinal distribution of starspots do not scale grossly with rotation rate.



rate research

Read More

203 - Guillermo Torres 2020
Radial-velocities for the early-type stars in the Pleiades cluster have always been challenging to measure because of the significant rotational broadening of the spectral lines. The large scatter in published velocities has led to claims that many are spectroscopic binaries, and in several cases preliminary orbital solutions have been proposed. To investigate these claims, we obtained and report here velocity measurements for 33 rapidly-rotating B, A, and early F stars in the Pleiades region, improving significantly on the precision of the historical velocities for most objects. With one or two exceptions, we do not confirm any of the previous claims of variability, and we also rule out all four of the previously published orbital solutions, for HD 22637, HD 23302, HD 23338, and HD 23410. We do find HD 22637 to be a binary, but with a different period (71.8 days). HD 23338 is likely a binary as well, with a preliminary 8.7 yr period also different from the one published. Additionally, we report a 3635 day orbit for HD 24899, another new spectroscopic binary in the cluster. From the 32 bona fide members in our sample we determine a mean radial velocity for the Pleiades of 5.79 +/- 0.24 km/s, or 5.52 +/- 0.31 km/s when objects with known visual companions are excluded. Adding these astrometric binaries to the new spectroscopic ones, we find a lower limit to the binary fraction among the B and A stars of 37%. In addition to the velocities, we measure v sin i for all stars, ranging between 69 and 317 km/s.
We present intermediate and low resolution optical spectroscopy (650-915 nm) of seven faint, very red objects (20 > I >= 17.8, I-Z >= 0.5) discovered in a CCD-based IZ survey covering an area of 1 sq. deg in the central region of the Pleiades open cluster. The observed spectra show that these objects are very cool dwarfs, having spectral types in the range M6-M9. Five out of the seven objects can be considered as Pleiades members on the basis of their radial velocities, Halpha emission and other gravity sensitive atomic features like the NaI doublet at 818.3 and 819.5 nm. According to current evolutionary models the masses of these new objects range from roughly 80 MJup for the hottest in the sample down to 45 MJup for Roque 4, the coolest and faintest confirmed member. These observations prove that the cloud fragmentation process extends well into the brown dwarf realm, suggesting a rise in the initial mass function below the substellar limit.
Rotation periods obtained with the Kepler satellite have been combined with precise measurements of projected rotation velocity from the WIYN 3.5-m telescope to determine the distribution of projected radii for several hundred low-mass ($0.1 leq M/M_{odot} leq 0.8$), fast-rotating members of the Pleiades cluster. A maximum likelihood modelling technique, that takes account of observational uncertainties, selection effects and censored data, and considers the effects of differential rotation and unresolved binarity, has been used to find that the average radius of these stars is $14 pm 2$ per cent larger at a given luminosity than predicted by the evolutionary models of Dotter et al. (2008) and Baraffe et al. (2015). The same models are a reasonable match to the interferometric radii of older, magnetically inactive field M-dwarfs, suggesting that the over-radius may be associated with the young, magnetically active nature of the Pleiades objects. No evidence is found for any change in this over-radius above and below the boundary marking the transition to full convection. Published evolutionary models that incorporate either the effects of magnetic inhibition of convection or the blocking of flux by dark starspots do not individually explain the radius inflation, but a combination of the two effects might. The distribution of projected radii is consistent with the adopted hypothesis of a random spatial orientation of spin axes; strong alignments of the spin vectors into cones with an opening semi-angle $<30^{circ}$ can be ruled out. Any plausible but weaker alignment would increase the inferred over-radius.
New sets of young M dwarfs with complex, sharp-peaked, and strictly periodic photometric modulations have recently been discovered with Kepler/K2 and TESS data. All of these targets are part of young star-forming associations. Suggested explanations range from accretion of dust disks to co-rotating clouds of material to stellar spots getting periodically occulted by spin-orbit-misaligned dust disks. Here we provide a comprehensive overview of all aspects of these hypotheses, and add more observational constraints in an effort to understand these objects with photometry from TESS and the SPECULOOS Southern Observatory (SSO). We scrutinize the hypotheses from three different angles: (1) we investigate the occurrence rates of these scenarios through existing young star catalogs; (2) we study the longevity of these features using over one year of combined photometry from TESS and SSO; and (3) we probe the expected color dependency with multi-color photometry from SSO. In this process, we also revisit the stellar parameters accounting for activity effects, study stellar flares as activity indicators over year-long time scales, and develop toy models to imitate typical morphologies. We identify which parts of the hypotheses hold true or are challenged by these new observations. So far, none of the hypotheses stand out as a definite answer, and each come with limitations. While the mystery of these complex rotators remains, we here add valuable observational pieces to the puzzle for all studies going forward.
We use K2 to continue the exploration of the distribution of rotation periods in Pleiades that we began in Paper I. We have discovered complicated multi-period behavior in Pleiades stars using these K2 data, and we have grouped them into categories, which are the focal part of this paper. About 24% of the sample has multiple, real frequencies in the periodogram, sometimes manifesting as obvious beating in the light curves. Those having complex and/or structured periodogram peaks, unresolved multiple periods, and resolved close multiple periods are likely due to spot/spot group evolution and/or latitudinal differential rotation; these largely compose the slowly rotating sequence in $P$ vs.~$(V-K_{rm s})_0$ identified in Paper I. The fast sequence in $P$ vs.~$(V-K_{rm s})_0$ is dominated by single-period stars; these are likely to be rotating as solid bodies. Paper III continues the discussion, speculating about the origin and evolution of the period distribution in the Pleiades.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا