In this paper, we prove some common coupled fixed point theorems for mappings satisfying different contractive conditions in the context of complete $C^*$-algebra-valued metric spaces. Moreover, the paper provides an application to prove the existence and uniqueness of a solution for Fredholm nonlinear integral equations.
Frames on Hilbert C*-modules have been defined for unital C*-algebras by Frank and Larson and operator valued frames on a Hilbert space have been studied in arXiv.0707.3272v1.[math.FA]. Goal of the present paper is to introduce operator valued frames on a Hilbert C*-module for a sigma-unital C*-algebra. Theorem 1.4 reformulates the definition given by Frank and Larson in terms of a series of rank-one operators converging in the strict topology. Theorem 2.2. shows that the frame transform and the frame projection of an operator valued frame are limits in the strict topology of a series of elements in the multiplier algebra and hence belong to it. Theorem 3.3 shows that two operator valued frames are right similar if and only if they share the same frame projection. Theorem 3.4 establishes a one to one correspondence between Murray-von Neumann equivalence classes of projections in the multiplier algebra and right similarity equivalence classes of operator valued frames and provides a parametrization of all Parseval operator-valued frames on a given Hilbert C*-module. Left similarity is then defined and Proposition 3.9 establishes when two left unitarily equivalent frames are also right unitarily equivalent.
For a closed cocompact subgroup $Gamma$ of a locally compact group $G$, given a compact abelian subgroup $K$ of $G$ and a homomorphism $rho:hat{K}to G$ satisfying certain conditions, Landstad and Raeburn constructed equivariant noncommutative deformations $C^*(hat{G}/Gamma, rho)$ of the homogeneous space $G/Gamma$, generalizing Rieffels construction of quantum Heisenberg manifolds. We show that when $G$ is a Lie group and $G/Gamma$ is connected, given any norm on the Lie algebra of $G$, the seminorm on $C^*(hat{G}/Gamma, rho)$ induced by the derivation map of the canonical $G$-action defines a compact quantum metric. Furthermore, it is shown that this compact quantum metric space depends on $rho$ continuously, with respect to quantum Gromov-Hausdorff distances.
This paper introduce a new class of operators and contraction mapping for a cyclical map T on G-metric spaces and the approximately fixed point properties. Also,we prove two general lemmas regarding approximate fixed Point of cyclical contraction mapping on G-metric spaces. Using these results we prove several approximate fixed point theorems for a new class of operators on G-metric spaces (not necessarily complete). These results can be exploited to establish new approximate fixed point theorems for cyclical contraction maps. Further,there is a new class of cyclical operators and contraction mapping on G-metric space (not necessarily complete)which do not need to be continuous.Finally,examples are given to support the usability of our results.
In this paper, we establish a common fixed point theorem for two pairs of occasionally weakly compatible single and set-valued maps satisfying a strict contractive condition in a metric space. Our result extends many results existing in the literature as those of Aliouche and Popa [15-20]. Also we establish another common fixed point theorem for four owc single and set-valued maps of Gregu% v{s} type which generalizes the results of Djoudi and Nisse, Pathak, Cho, Kang and Madharia and we end our work by giving a third theorem which extends the results given by Elamrani & Mehdaoui and Mbarki.