Do you want to publish a course? Click here

Asymptotically flat black holes in 2+1 dimensions

118   0   0.0 ( 0 )
 Added by Bayram Tekin
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Asymptotically flat black holes in $2+1$ dimensions are a rarity. We study the recently found black flower solutions (asymptotically flat black holes with deformed horizons), static black holes, rotating black holes and the dynamical black flowers (black holes with radiative gravitons ) of the purely quadratic version of new massive gravity. We show how they appear in this theory and we also show that they are also solutions to the infinite order extended version of the new massive gravity, that is the Born-Infeld extension of new massive gravity with an amputated Einsteinian piece. The same metrics also solve the topologically extend



rate research

Read More

We study asymptotically flat black holes with massive graviton hair within the ghost-free bigravity theory. There have been contradictory statements in the literature about their existence -- such solutions were reported some time ago, but later a different group claimed the Schwarzschild solution to be the only asymptotically flat black hole in the theory. As a result, the controversy emerged. We have analyzed the issue ourselves and have been able to construct such solutions within a carefully designed numerical scheme. We find that for given parameter values there can be one or two asymptotically flat hairy black holes in addition to the Schwarzschild solution. We analyze their perturbative stability and find that they can be stable or unstable, depending on the parameter values. The masses of stable hairy black holes that would be physically relevant range form stellar values up to values typical for supermassive black holes. One of their two metrics is extremely close to Schwarzschild, while all their hair is hidden in the second metric that is not coupled to matter and not directly seen. If the massive bigravity theory indeed describes physics, the hair of such black holes should manifest themselves in violent processes like black hole collisions and should be visible in the structure of the signals detected by LIGO/VIRGO.
We find a class of asymptotically flat slowly rotating charged black hole solutions of Einstein-Maxwell-dilaton theory with arbitrary dilaton coupling constant in higher dimensions. Our solution is the correct one generalizing the four-dimensional case of Horne and Horowitz cite{Hor1}. In the absence of a dilaton field, our solution reduces to the higher dimensional slowly rotating Kerr-Newman black hole solution. The angular momentum and the gyromagnetic ratio of these rotating dilaton black holes are computed. It is shown that the dilaton field modifies the gyromagnetic ratio of the black holes.
151 - Anindya Biswas 2017
In this paper, we have studied the Hawking radiation of massive spin-$1$ particles from the black holes in $(2+1)$ dimensions with non- trivial dilaton fields. We consider two special varities of these black holes one is static charged and other is spinning electrically neutral. By applying the standard method of $WKB$ approximation and Hamilton- Jacobi ansatz we have shown the tunneling probability and Hawking temperature of massive bosons accordingly. In the certain limit of the dilaton coupling for spinning neutral case we have recovered the Hawking temperature of the $BTZ$ black holes as well.
We consider scalar field perturbations about asymptotically Lifshitz black holes with dynamical exponent z in D dimensions. We show that, for suitable boundary conditions, these Lifshitz black holes are stable under scalar field perturbations. For z=2, we explicitly compute the quasinormal mode frecuencies, which result to be purely imaginary, and then obtain the damping-off of the scalar field perturbation in these backgrounds. The general analysis includes, in particular, the z=3 black hole solution of three-dimensional massive gravity.
We study the thermodynamics of the asymptotically flat static black hole in Lovelock back ground where the coupling constants of the Lovelock theory effects are taken into account. We consider the effects of the second order of the coupling constant, and third order of the Lovelock constant coefficient on the thermodynamics of asymptotically flat static black holes. In this case the effect of the coupling constants on the thermodynamics of the black hole are discussed for 5, 6, and 7 dimensional spacetime.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا