The pseudorapidity density (dN/deta) for p+p, p+A and A+A(B) collisions, and the mean multiplicity <Nch> for ee, ep, and p+p collisions, are studied for an inclusive range of beam energies (Root_s). Characteristic scaling patterns are observed for both dN/deta and <Nch>, consistent with a thermal particle production mechanism for the bulk of the soft particles produced in all of these systems. They also validate an essential role for quark participants in these collisions. The scaled values for dN/deta and <Nch> are observed to factorize into contributions which depend on log(Root_s) and the number of nucleon or quark participant pairs (Npp). Quantification of these contributions give expressions which serve to systematize dN/deta and <Nch> measurements spanning nearly four orders of magnitude in Root_s, and to predict their values as a function of Root_s and Npp.