The Performance of the Muon Veto of the GERDA Experiment


Abstract in English

Low background experiments need a suppression of cosmogenically induced events. The GERDA experiment located at LNGS is searching for the neutrinless double beta decay of $^{76}$Ge. It is equipped with an active muon veto the main part of which is a water Cherenkov veto with 66 PMTs in the watertank surrounding the GERDA cryostat. With this system 806 live days have been recorded, 491 days were combined muon-germanium data. A muon detection efficiency of $varepsilon_{mu d}=(99.935pm0.015)$ % was found in a Monte Carlo simulation for the muons depositing energy in the germanium detectors. By examining coincident muon-germanium events a rejection efficiency of $varepsilon_{mu r}=(99.2_{-0.4}^{+0.3})$ % was found. Without veto condition the muons by themselves would cause a background index of $textrm{BI}_{mu}=(3.16 pm 0.85)times10^{-3}$ cts/(keV$cdot$kg$cdot$yr) at $Q_{betabeta}$.

Download