Do you want to publish a course? Click here

Signature of chiral fermion instability in the Weyl semimetal TaAs above the quantum limit

58   0   0.0 ( 0 )
 Added by Chi Zhang
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the electrical transport properties for Weyl semimetal TaAs in an intense magnetic field. Series of anomalies occur in the longitudinal magnetoresistance and Hall signals at ultra-low temperatures when the Weyl electrons are confined into the lowest Landau level. These strongly temperature-dependent anomalies are ascribed to the electron-hole pairing instability. Our measurements show that the Weyl semimetal TaAs in the ultraquantum regime provides a good platform for studying electron-electron interaction in topological nontrivial semimetals.



rate research

Read More

Tantalum arsenide is a member of the non-centrosymmetric monopnictides, which are putative Weyl semimetals. In these materials, three-dimensional chiral massless quasiparticles, the so-called Weyl fermions, are predicted to induce novel quantum mechanical phenomena, such as the chiral anomaly and topological surface states. However, their chirality is only well-defined if the Fermi level is close enough to the Weyl points that separate Fermi surface pockets of opposite chirality exist. In this article, we present the bulk Fermi surface topology of high quality single crystals of TaAs, as determined by angle-dependent Shubnikov-de Haas and de Haas-van Alphen measurements combined with ab-initio band-structure calculations. Quantum oscillations originating from three different types of Fermi surface pocket were found in magnetization, magnetic torque, and mag- netoresistance measurements performed in magnetic fields up to 14 T and temperatures down to 1.8 K. Of these Fermi pockets, two are pairs of topologically non-trivial electron pockets around the Weyl points and one is a trivial hole pocket. Unlike the other members of the non-centrosymmetric monopnictides, TaAs is the first Weyl semimetal candidate with the Fermi energy suffciently close to both types of Weyl points to generate chiral quasiparticles at the Fermi surface.
In the topological semimetals, electrons in the vicinity of the Weyl or Dirac nodes behave like massless relativistic fermions that are of interest both for basic research and future electronic applications. Thus far, a detection of these Dirac or Weyl quasiparticles in topological semimetals is often elusive since in these materials, conventional charge carriers exist as well. Here, considering a prototype topological Weyl semimetal TaAs as an example, we show that when the massless quasiparticles reach the ultra-quantum limit in high magnetic fields, the magnetostriction of the semimetal is appreciably produced by the relativistic fermions. This field-induced expansion measured along the [001] direction exhibits a weak dependence on the magnetic-field orientation and is in striking contrast to the magnetostriction measured along the [100] axis. The latter quantity experiences immense changes from large positive to large negative values with minute deviations of the applied field from the [001] direction. Employing a rigid-band approximation, we work out a theory of the magnetostriction for the Weyl semimetals and point out the features of this thermodynamic probe that can serve as hallmarks of the Weyl quasiparticles. Using the theory, we quantitatively describe a part of the obtained experimental data and find a number of the parameters characterizing this material. The derived dependence of the Fermi level on the magnetic field should be also relevant to understanding some other field-dependent properties of TaAs, in particular, the negative longitudinal magnetoresistance. Our results illustrate how a magnetostriction may be used to unveil Weyl fermions in topological semimetals with a noncetrosymmetric crystal structure.
112 - M. R. Norman 2015
It is shown that the Weyl semimetal TaAs can have a significant polar vector contribution to its optical activity. This is quantified by ab initio calculations of the resonant x-ray diffraction at the Ta L1 edge. For the Bragg vector (400), this polar vector contribution to the circular intensity differential between left and right polarized x-rays is predicted to be comparable to that arising from linear dichroism. Implications this result has in regards to optical effects predicted for topological Weyl semimetals are discussed.
Weyl fermions are a new ingredient for correlated states of electronic matter. A key difficulty has been that real materials also contain non-Weyl quasiparticles, and disentangling the experimental signatures has proven challenging. We use magnetic fields up to 95 tesla to drive the Weyl semimetal TaAs far into its quantum limit (QL), where only the purely chiral 0th Landau levels (LLs) of the Weyl fermions are occupied. We find the electrical resistivity to be nearly independent of magnetic field up to 50 tesla: unusual for conventional metals but consistent with the chiral anomaly for Weyl fermions. Above 50 tesla we observe a two-order-of-magnitude increase in resistivity, indicating that a gap opens in the chiral LLs. Above 80 tesla we observe strong ultrasonic attenuation below 2 kelvin, suggesting a mesoscopically-textured state of matter. These results point the way to inducing new correlated states of matter in the QL of Weyl semimetals.
260 - B. Q. Lv , H. M. Weng , B. B. Fu 2015
Weyl semimetals are a class of materials that can be regarded as three-dimensional analogs of graphene breaking time reversal or inversion symmetry. Electrons in a Weyl semimetal behave as Weyl fermions, which have many exotic properties, such as chiral anomaly and magnetic monopoles in the crystal momentum space. The surface state of a Weyl semimetal displays pairs of entangled Fermi arcs at two opposite surfaces. However, the existence of Weyl semimetals has not yet been proved experimentally. Here we report the experimental realization of a Weyl semimetal in TaAs by observing Fermi arcs formed by its surface states using angle-resolved photoemission spectroscopy. Our first-principles calculations, matching remarkably well with the experimental results, further confirm that TaAs is a Weyl semimetal.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا