Do you want to publish a course? Click here

Hot ammonia around young O-type stars. III. High-mass star formation and hot core activity in W51~Main

113   0   0.0 ( 0 )
 Added by Ciriaco Goddi
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper is the third in a series of ammonia multilevel imaging studies in well-known high-mass star forming regions. Using the JVLA, we have mapped the hot and dense molecular gas in W51 Main, with about 0.2 arcsec angular resolution, in five highly-excited metastable inversion transitions of ammonia (ammonia): (J,K)=(6,6), (7,7), (9,9), (10,10), and (13,13). We have identified and characterised two main centers of high-mass star formation in W51-Main: the W51e2 complex and the W51e8 core (6 arcsec southward of W51e2). The former breaks down into three further sub-cores: W51e2-W, which surrounds the well known HC HII region, where hot ammonia is observed in absorption, and two additional dusty cores, W51e2-E (~0.8 to the East) and W51e2-NW (~1 to the North), where hot ammonia is observed in emission. The velocity maps towards the HC HII region show a clear velocity gradient that may indicate rotation, though we do not directly observe a Keplerian velocity profile. The absence of outflow and/or maser activity and the low amount of molecular gas available for accretion (~5 solar masses) with respect to the mass of the central YSO (>20 solar masses), both indicate that the central YSO has already accreted most of its final mass. On the other hand, in the nearby W51e2-E object, the relatively large amount of hot molecular gas available for accretion (~20 solar masses, within about half an arcsecond or 2500 AU), along with strong outflow and maser activity, indicates that the main accretion center in the W51e2 complex is W51e2-E rather than W51e2-W. Finally, W51e2-NW and W51e8, although less dense, are also hot cores and contain a significant amount of molecular gas (~30 and 70 solar masses, respectively). We speculate that they may host high-mass YSOs either at a previous evolutionary stage or with lower mass than W51e2-E and W51e2-W.



rate research

Read More

We have used the JVLA at the 1 cm band to map five highly-excited metastable inversion transitions of ammonia, (J,K)=(6,6), (7,7), (9,9), (10,10), and (13,13), in W51 IRS2 with ~0.2 angular resolution. We present detections of both thermal (extended) ammonia emission in the five inversion lines, with rotational states ranging in energy from about 400 to 1700 K, and point-like ammonia maser emission in the (6,6), (7,7), and (9,9) lines. The thermal ammonia emits around a velocity of 60 km/s, near the clouds systemic velocity, is elongated in the east-west direction across 4 and is confined by the HII regions W51d, W51d1, and W51d2. The ammonia masers are observed in the eastern tip of the dense clump traced by thermal ammonia, offset by 0.65 to the East from its emission peak, and have a peak velocity at ~47.5 km/s. No maser components are detected near the systemic velocity. The ammonia masers are separated by 0.65 (3500 AU) from the (rare) vibrationally-excited SiO masers, excited by the deeply-embedded YSO W51-North. This excludes that the two maser species are excited by the same object. Interestingly, the ammonia masers originate at the same sky position as a peak in a submm line of SO2 imaged with the SMA, tracing a face-on circumstellar disk/ring around W51-North. In addition, the thermal emission from the most highly excited ammonia lines, (10,10) and (13,13), shows two main condensations, the dominant one towards W51-North with the SiO/H2O masers, and a weaker peak at the ammonia maser position. We propose a scenario where the ring seen in SO2 emission is a circumbinary disk surrounding (at least) two high-mass YSOs, W51-North (exciting the SiO masers) and a nearby companion (exciting the ammonia masers), separated by 3500 AU. This finding indicates a physical connection (in a binary) between the two rare SiO and ammonia maser species.
To constrain theoretical models of high-mass star formation, observational signatures of mass accretion in O-type forming stars are desirable. Using the JVLA, we have mapped the hot and dense molecular gas in the hot core NGC7538 IRS1, with 0.2 angular resolution, in seven metastable (J=K) inversion transitions of ammonia: (J,K)=(6,6), (7,7), (9,9), (10,10), (12,12), (13,13), and (14,14). These lines arise from energy levels between ~400 K and ~1950 K above the ground state, and are observed in absorption against the HC-HII region associated with NGC7538 IRS1. With a 500 AU linear resolution, we resolve the elongated North-South ammonia structure into two compact components: the main core and a southernmost component. Previous observations of the radio continuum with a 0.08 (or 200 AU) resolution, resolved in turn the compact core in two (northern and southern) components. These features correspond to a triple system of high-mass YSOs IRS1a, IRS1b, and IRS1c identified with VLBI measurements of methanol masers. The velocity maps of the compact core show a clear velocity gradient in all lines, which is indicative of rotation in a (circumbinary) envelope, containing ~40 solar masses (dynamical mass). In addition, we derived physical conditions of the molecular gas: rotational temperatures ~280 K, ammonia column densities ~1.4-2.5 x 10^19 cm-2, H_2 volume densities ~3.5-6.2 x 10^10 cm-3, and a total gas mass in the range of 19-34 solar masses, for the main core. We conclude that NGC7538 IRS1 is the densest hot molecular core known, containing a rotating envelope which hosts a multiple system of high-mass YSOs, possibly surrounded by accretion disks. Future JVLA observations in the A-configuration are needed to resolve the binary system in the core and may allow to study the gas kinematics in the accretion disks associated with individual binary members.
We present a detailed observational and modeling study of the hot core VLA 3 in the high-mass star-forming region AFGL 2591, which is a target region of the NOrthern Extended Millimeter Array (NOEMA) large program CORE. Using NOEMA observations at 1.37 mm with an angular resolution of ~0.42 (1 400 au at 3.33 kpc), we derived the physical and chemical structure of the source. We modeled the observed molecular abundances with the chemical evolution code MUSCLE (MUlti Stage ChemicaL codE). Results. With the kinetic temperature tracers CH3CN and H2CO we observe a temperature distribution with a power-law index of q = 0.41+-0.08. Using the visibilities of the continuum emission we derive a density structure with a power-law index of p = 1.7+-0.1. The hot core spectra reveal high molecular abundances and a rich diversity in complex molecules. The majority of the molecules have an asymmetric spatial distribution around the forming protostar(s), which indicates a complex physical structure on scales < 1 400 au. Using MUSCLE, we are able to explain the observed molecular abundance of 10 out of 14 modeled species at an estimated hot core chemical age of ~21 100 years. In contrast to the observational analysis, our chemical modeling predicts a lower density power-law index of p < 1.4. Reasons for this discrepancy are discussed. Conclusions. Combining high spatial resolution observations with detailed chemical modeling allows us to derive a concise picture of the physical and chemical structure of the famous AFGL 2591 hot core. The next steps are to conduct a similar analysis for the whole CORE sample, and then use this analysis to constrain the chemical diversity in high-mass star formation to a much greater depth.
242 - Veronica Allen 2019
Context. As a building block for amino acids, formamide (NH$_2$CHO) is an important molecule in astrobiology and astrochemistry, but its formation path in the interstellar medium is not understood well. Aims. We aim to find empirical evidence to support the chemical relationships of formamide to HNCO and H$_2$CO. Methods. We examine high angular resolution (~0.2) Atacama Large Millimeter/submillimeter Array (ALMA) maps of six sources in three high-mass star-forming regions and compare the spatial extent, integrated emission peak position, and velocity structure of HNCO and H$_2$CO line emission with that of NH$_2$CHO by using moment maps. Through spectral modeling, we compare the abundances of these three species. Results. In these sources, the emission peak separation and velocity dispersion of formamide emission is most often similar to HNCO emission, while the velocity structure is generally just as similar to H$_2$CO and HNCO (within errors). From the spectral modeling, we see that the abundances between all three of our focus species are correlated, and the relationship between NH$_2$CHO and HNCO reproduces the previously demonstrated abundance relationship. Conclusions. In this first interferometric study, which compares two potential parent species to NH$_2$CHO, we find that all moment maps for HNCO are more similar to NH$_2$CHO than H$_2$CO in one of our six sources (G24 A1). For the other five sources, the relationship between NH$_2$CHO, HNCO, and H$_2$CO is unclear as the different moment maps for each source are not consistently more similar to one species as opposed to the other.
We present Submillimeter Array (SMA) observations at 345 GHz towards the intermediate/high-mass cluster-forming region NGC 6334 V. From the dust emission we spatially resolve three dense condensations, the brightest one presenting the typical chemistry of a hot core. The magnetic field (derived from the dust polarized emission) shows a bimodal converging pattern towards the hot core. The molecular emission traces two filamentary structures at two different velocities, separated by 2 km/s, converging to the hot core and following the magnetic field distribution. We compare the velocity field and the magnetic field derived from the SMA observations with MHD simulations of star-forming regions dominated by gravity. This comparison allows us to show how the gas falls in from the larger-scale extended dense core (~0.1 pc) of NGC 6334 V towards the higher-density hot core region (~0.02 pc) through two distinctive converging flows dragging the magnetic field, whose strength seems to have been overcome by gravity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا