Do you want to publish a course? Click here

Determining Type Ia Supernovae Host galaxy extinction probabilities and a statistical approach to estimating the absorption-to-reddening ratio $R_V$

85   0   0.0 ( 0 )
 Added by Aleksandar Cikota
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate limits on the extinction values of Type Ia supernovae to statistically determine the most probable color excess, E(B-V), with galactocentric distance, and use these statistics to determine the absorption-to-reddening ratio, $R_V$, for dust in the host galaxies. We determined pixel-based dust mass surface density maps for 59 galaxies from the Key Insight on Nearby Galaxies: a Far-Infrared Survey with textit{Herschel} (KINGFISH, Kennicutt et al. (2011)). We use Type Ia supernova spectral templates (Hsiao et al. 2007) to develop a Monte Carlo simulation of color excess E(B-V) with $R_V$ = 3.1 and investigate the color excess probabilities E(B-V) with projected radial galaxy center distance. Additionally, we tested our model using observed spectra of SN 1989B, SN 2002bo and SN 2006X, which occurred in three KINGFISH galaxies. Finally, we determined the most probable reddening for Sa-Sap, Sab-Sbp, Sbc-Scp, Scd-Sdm, S0 and Irregular galaxy classes as a function of $R/R_{25}$. We find that the largest expected reddening probability are in Sab-Sb and Sbc-Sc galaxies, while S0 and Irregulars are very dust poor. We present a new approach for determining the absorption-to-reddening ratio $R_V$ using color excess probability functions, and find for a sample of 21 SNe Ia observed in Sab-Sbp galaxies, and 34 SNe in Sbc-Scp, an $R_V$ of 2.71 $pm$ 1.58 and $R_V$ = 1.70 $pm$ 0.38 respectively.



rate research

Read More

Type Ia supernovae (SNe Ia) are standardizable candles, but for over a decade, there has been a debate on how to properly account for their correlations with host galaxy properties. Using the Bayesian hierarchical model UNITY, we simultaneously fit for the SN Ia light curve and host galaxy standardization parameters on a set of 103 Sloan Digital Sky Survey II SNe Ia. We investigate the influences of host stellar mass, along with both localized ($r<3$ kpc) and host-integrated average stellar ages, derived from stellar population synthesis modeling. We find that the standardization for the light-curve shape ($alpha$) is correlated with host galaxy standardization terms ($gamma_i$) requiring simultaneous fitting. In addition, we find that these correlations themselves are dependent on host galaxy stellar mass that includes a shift in the color term ($beta$) of $0.8 mathrm{mag}$, only significant at $1.2sigma$ due to the small sample. We find a linear host mass standardization term at the $3.7sigma$ level, that by itself does not significantly improve the precision of an individual SN Ia distance. However, a standardization that uses both stellar mass and average local stellar age is found to be significant at $>3sigma$ in the two-dimensional posterior space. In addition, the unexplained scatter of SNe Ia absolute magnitude post standardization, is reduced from $0.122^{+0.019}_{-0.018}$ to $0.109pm0.017$ mag, or $sim10%$. We do not see similar improvements when using global ages. This combination is consistent with either metallicity or line-of-sight dust affecting the observed luminosity of SNe Ia.
The increase in the number of Type Ia supernovae (SNe,Ia) has demonstrated that the population shows larger diversity than has been assumed in the past. The reasons (e.g. parent population, explosion mechanism) for this diversity remain largely unknown. We have investigated a sample of SNe,Ia near-infrared light curves and have correlated the phase of the second maximum with the bolometric peak luminosity. The peak bolometric luminosity is related to the time of the second maximum (relative to the {it B} light curve maximum) as follows : $L_{max}(10^{43} erg s^{-1}) = (0.039 pm 0.004) times t_2(J)(days) + (0.013 pm 0.106)$. $^{56}$Ni masses can be derived from the peak luminosity based on Arnetts rule, which states that the luminosity at maximum is equal to instantaneous energy generated by the nickel decay. We check this assumption against recent radiative-transfer calculations of Chandrasekhar-mass delayed detonation models and find this assumption is valid to within 10% in recent radiative-transfer calculations of Chandrasekhar-mass delayed detonation models. The $L_{max}$ vs. $t_2$ relation is applied to a sample of 40 additional SNe,Ia with significant reddening ($E(B-V) >$ 0.1 mag) and a reddening-free bolometric luminosity function of SNe~Ia is established. The method is tested with the $^{56}$Ni mass measurement from the direct observation of $gamma-$rays in the heavily absorbed SN 2014J and found to be fully consistent. Super-Chandrasekhar-mass explosions, in particular SN,2007if, do not follow the relations between peak luminosity and second IR maximum. This may point to an additional energy source contributing at maximum light. The luminosity function of SNe,Ia is constructed and is shown to be asymmetric with a tail of low-luminosity objects and a rather sharp high-luminosity cutoff, although it might be influenced by selection effects.
We present optical and near-infrared (NIR, $YJH$-band) observations of 42 Type Ia supernovae (SNe Ia) discovered by the untargeted intermediate Palomar Transient Factory (iPTF) survey. This new data-set covers a broad range of redshifts and host galaxy stellar masses, compared to previous SN Ia efforts in the NIR. We construct a sample, using also literature data at optical and NIR wavelengths, to examine claimed correlations between the host stellar masses and the Hubble diagram residuals. The SN magnitudes are corrected for host galaxy extinction using either a global total-to-selective extinction ratio, $R_V$=2.0 for all SNe, or a best-fit $R_V$ for each SN individually. Unlike previous studies which were based on a narrower range in host stellar mass, we do not find evidence for a mass-step, between the color- and stretch-corrected peak $J$ and $H$ magnitudes for galaxies below and above $log(M_{*}/M_{odot}) = 10$. However, the mass-step remains significant ($3sigma$) at optical wavelengths ($g,r,i$) when using a global $R_V$, but vanishes when each SN is corrected using their individual best-fit $R_V$. Our study confirms the benefits of the NIR SN Ia distance estimates, as these are largely exempted from the empirical corrections dominating the systematic uncertainties in the optical.
A key tracer of the elusive progenitor systems of Type Ia supernovae (SNe Ia) is the detection of narrow blueshifted time-varying Na I D absorption lines, interpreted as evidence of circumstellar material (CSM) surrounding the progenitor system. The origin of this material is controversial, but the simplest explanation is that it results from previous mass loss in a system containing a white dwarf and a non-degenerate companion star. We present new single-epoch intermediate-resolution spectra of 17 low-redshift SNe Ia taken with XShooter on the ESO Very Large Telescope. Combining this sample with events from the literature, we confirm an excess (~20 per cent) of SNe Ia displaying blueshifted narrow Na I D absorption features compared to non-blueshifted Na I D features. The host galaxies of SNe Ia displaying blueshifted absorption profiles are skewed towards later-type galaxies, compared to SNe Ia that show no Na I D absorption, and SNe Ia displaying blueshifted narrow Na I D absorption features have broader light curves. The strength of the Na I D absorption is stronger in SNe Ia displaying blueshifted Na I D absorption features than those without blueshifted features, and the strength of the blueshifted Na I D is correlated with the B-V colour of the SN at maximum light. This strongly suggests the absorbing material is local to the SN. In the context of the progenitor systems of SNe Ia, we discuss the significance of these findings and other recent observational evidence on the nature of SN Ia progenitors. We present a summary that suggests there are at least two distinct populations of normal, cosmologically useful SNe Ia.
Type Ia supernovae (SNe Ia) that are multiply imaged by gravitational lensing can extend the SN Ia Hubble diagram to very high redshifts $(zgtrsim 2)$, probe potential SN Ia evolution, and deliver high-precision constraints on $H_0$, $w$, and $Omega_m$ via time delays. However, only one, iPTF16geu, has been found to date, and many more are needed to achieve these goals. To increase the multiply imaged SN Ia discovery rate, we present a simple algorithm for identifying gravitationally lensed SN Ia candidates in cadenced, wide-field optical imaging surveys. The technique is to look for supernovae that appear to be hosted by elliptical galaxies, but that have absolute magnitudes implied by the apparent hosts photometric redshifts that are far brighter than the absolute magnitudes of normal SNe Ia (the brightest type of supernovae found in elliptical galaxies). Importantly, this purely photometric method does not require the ability to resolve the lensed images for discovery. AGN, the primary sources of contamination that affect the method, can be controlled using catalog cross-matches and color cuts. Highly magnified core-collapse supernovae will also be discovered as a byproduct of the method. Using a Monte Carlo simulation, we forecast that LSST can discover up to 500 multiply imaged SNe Ia using this technique in a 10-year $z$-band search, more than an order of magnitude improvement over previous estimates (Oguri & Marshall 2010). We also predict that ZTF should find up to 10 multiply imaged SNe Ia using this technique in a 3-year $R$-band search---despite the fact that this survey will not resolve a single system.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا