No Arabic abstract
Bosonic channels are important in practice as they form a simple model for free-space or fiber-optic communication. Here we consider a single-sender two-receiver pure-loss bosonic broadcast channel and determine the unconstrained capacity region for the distillation of bipartite entanglement and secret key between the sender and each receiver, whenever they are allowed arbitrary public classical communication. We show how the state merging protocol leads to achievable rates in this setting, giving an inner bound on the capacity region. We also evaluate an outer bound on the region by using the relative entropy of entanglement and a `reduction by teleportation technique. The outer bounds match the inner bounds in the infinite-energy limit, thereby establishing the unconstrained capacity region for such channels. Our result could provide a useful benchmark for implementing a broadcasting of entanglement and secret key through such channels. An important open question relevant to practice is to determine the capacity region in both this setting and the single-sender single-receiver case when there is an energy constraint on the transmitter.
We consider quantum key distribution (QKD) and entanglement distribution using a single-sender multiple-receiver pure-loss bosonic broadcast channel. We determine the unconstrained capacity region for the distillation of bipartite entanglement and secret key between the sender and each receiver, whenever they are allowed arbitrary public classical communication. A practical implication of our result is that the capacity region demonstrated drastically improves upon rates achievable using a naive time-sharing strategy, which has been employed in previously demonstrated network QKD systems. We show a simple example of the broadcast QKD protocol overcoming the limit of the point-to-point strategy. Our result is thus an important step toward opening a new framework of network channel-based quantum communication technology.
Communication over a noisy channel is often conducted in a setting in which different input symbols to the channel incur a certain cost. For example, for bosonic quantum channels, the cost associated with an input state is the number of photons, which is proportional to the energy consumed. In such a setting, it is often useful to know the maximum amount of information that can be reliably transmitted per cost incurred. This is known as the capacity per unit cost. In this paper, we generalize the capacity per unit cost to various communication tasks involving a quantum channel such as classical communication, entanglement-assisted classical communication, private communication, and quantum communication. For each task, we define the corresponding capacity per unit cost and derive a formula for it analogous to that of the usual capacity. Furthermore, for the special and natural case in which there is a zero-cost state, we obtain expressions in terms of an optimized relative entropy involving the zero-cost state. For each communication task, we construct an explicit pulse-position-modulation coding scheme that achieves the capacity per unit cost. Finally, we compute capacities per unit cost for various bosonic Gaussian channels and introduce the notion of a blocklength constraint as a proposed solution to the long-standing issue of infinite capacities per unit cost. This motivates the idea of a blocklength-cost duality, on which we elaborate in depth.
Entanglement distillation is a key primitive for distributing high-quality entanglement between remote locations. Probabilistic noiseless linear amplification based on the quantum scissors is a candidate for entanglement distillation from noisy continuous-variable (CV) entangled states. Being a non-Gaussian operation, quantum scissors is challenging to analyze. We present a derivation of the non-Gaussian state heralded by multiple quantum scissors in a pure loss channel with two-mode squeezed vacuum input. We choose the reverse coherent information (RCI)---a proven lower bound on the distillable entanglement of a quantum state under one-way local operations and classical communication (LOCC), as our figure of merit. We evaluate a Gaussian lower bound on the RCI of the heralded state. We show that it can exceed the unlimited two-way LOCCassisted direct transmission entanglement distillation capacity of the pure loss channel. The optimal heralded Gaussian RCI with two quantum scissors is found to be significantly more than that with a single quantum scissors, albeit at the cost of decreased success probability. Our results fortify the possibility of a quantum repeater scheme for CV quantum states using the quantum scissors.
We discuss quantum capacities for two types of entanglement networks: $mathcal{Q}$ for the quantum repeater network with free classical communication, and $mathcal{R}$ for the tensor network as the rank of the linear operation represented by the tensor network. We find that $mathcal{Q}$ always equals $mathcal{R}$ in the regularized case for the samenetwork graph. However, the relationships between the corresponding one-shot capacities $mathcal{Q}_1$ and $mathcal{R}_1$ are more complicated, and the min-cut upper bound is in general not achievable. We show that the tensor network can be viewed as a stochastic protocol with the quantum repeater network, such that $mathcal{R}_1$ is a natural upper bound of $mathcal{Q}_1$. We analyze the possible gap between $mathcal{R}_1$ and $mathcal{Q}_1$ for certain networks, and compare them with the one-shot classical capacity of the corresponding classical network.
The capacity of noisy quantum channels characterizes the highest rate at which information can be reliably transmitted and it is therefore of practical as well as fundamental importance. Capacities of classical channels are computed using alternating optimization schemes, called Blahut-Arimoto algorithms. In this work, we generalize classical Blahut-Arimoto algorithms to the quantum setting. In particular, we give efficient iterative schemes to compute the capacity of channels with classical input and quantum output, the quantum capacity of less noisy channels, the thermodynamic capacity of quantum channels, as well as the entanglement-assisted capacity of quantum channels. We give rigorous a priori and a posteriori bounds on the estimation error by employing quantum entropy inequalities and demonstrate fast convergence of our algorithms in numerical experiments.