Do you want to publish a course? Click here

A Pair of O VI and Broad Ly-alpha Absorbers Probing Warm Gas in a Galaxy Group Environment at z ~ 0.4

304   0   0.0 ( 0 )
 Added by Anand Narayanan
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the detection of two O VI absorbers separated in velocity by 710 km/s at z ~ 0.4 towards the background quasar SBS0957+599. Both absorbers are multiphase systems tracing substantial reservoirs of warm baryons. The low and intermediate ionization metals in the first absorber is consistent with an origin in photoionized gas. The O VI has a velocity structure different from other metal species. The Ly-alpha shows the presence of a broad feature. The line widths for O VI and the broad Ly-alpha suggest T = 7.1 x 10^5 K. This warm medium is probing a baryonic column which is an order of magnitude more than the total hydrogen in the cooler photoionized gas. The second absorber is detected only in H I and O VI. Here the temperature of 4.6 x 10^4 K supports O VI originating in a low-density photoionized gas. A broad component is seen in the Ly-alpha, offset from the O VI. The temperature in the broad Ly-alpha is T < 2.1 x 10^5 K. The absorbers reside in a galaxy overdensity region with 7 spectroscopically identified galaxies within ~ 10 Mpc and delta_v ~ 1000 km/s of the first absorber, and 2 galaxies inside a similar separation from the second absorber. The distribution of galaxies relative to the absorbers suggest that the line of sight could be intercepting a large-scale filament connecting galaxy groups, or the extended halo of a sub-L* galaxy. Though kinematically proximate, the two absorbers reaffirm the diversity in the physical conditions of low redshift O VI systems and the galactic environments they inhabit.



rate research

Read More

High signal-to-noise (S/N) observations of the QSO PKS 0405-123 (zem = 0.572) with the Cosmic Origins Spectrograph from 1134 to 1796 A with a resolution of 17 km s-1 are used to study the multi-phase partial Lyman limit system (LLS) at z = 0.16716 which has previously been studied using relatively low S/N spectra from STIS and FUSE. The LLS and an associated H I-free broad O VI absorber likely originate in the circumgalactic gas associated with a pair of galaxies at z = 0.1688 and 0.1670 with impact parameters of 116 h70-1 and 99 h70-1. The broad and symmetric O VI absorption is detected in the z = 0.16716 restframe with v = -278 +/- 3 km s-1, log N(O VI) = 13.90 +/- 0.03 and b = 52 +/- 2 km s-1. This absorber is not detected in H I or other species with the possible exception of N V . The broad, symmetric O VI profile and absence of corresponding H I absorption indicates that the circumgalactic gas in which the collisionally ionized O VI arises is hot (log T ~ 5.8-6.2). The absorber may represent a rare but important new class of low z IGM absorbers. The LLS has strong asymmetrical O VI absorption with log N(O VI) = 14.72 +/- 0.02 spanning a velocity range from -200 to +100 km s-1. The high and low ions in the LLS have properties resembling those found for Galactic highly ionized HVCs where the O VI is likely produced in the conductive and turbulent interfaces between cool and hot gas.
[Abridged] We present a detailed study of the largest sample of intervening O VI systems in the redshift range 1.9 < z < 3.1 detected in high resolution (R ~ 45,000) spectra of 18 bright QSOs observed with VLT/UVES. Based on Voigt profile and apparent optical depth analysis we find that (i) the Doppler parameters of the O VI absorption are usually broader than those of C IV (ii) the column density distribution of O VI is steeper than that of C IV (iii) line spread (delta v) of the O VI and C IV are strongly correlated (at 5.3sigma level) with delta v(O VI) being systematically larger than delta v(C IV) and (iv) delta v(O VI) and delta v(C IV) are also correlated (at > 5sigma level) with their respective column densities and with N(H I) (3 and 4.5 sigma respectively). These findings favor the idea that C IV and O VI absorption originate from different phases of a correlated structure and systems with large velocity spread are probably associated with overdense regions. The velocity offset between optical depth weighted redshifts of C IV and O VI absorption is found to be in the range 0 < |Delta v (O VI - CIV)| < 48 km/s with a median value of 8 km/s. We compare the properties of O VI systems in our sample with that of low redshift (z < 0.5) samples from the literature and find that (i) the O VI components at low-z are systematically wider than at high-z with an enhanced non-thermal contribution to their b-parameter, (ii) the slope of the column density distribution functions for high and low-z are consistent, (iii) range in gas temperature estimated from a subsample of well aligned absorbers are similar at both high and low-z, and (iv) Omega_{O VI} = (1.0 pm 0.2) times10^{-7} for N(O VI) > 10^{13.7} cm^{-2}, estimated in our high-z sample, is very similar to low-z estimations.
Using $HST$/COS observations of the twin quasar lines of sight Q$0107-025$A $&$ Q$0107-025$B, we report on the physical properties, chemical abundances and transverse sizes of gas in a multiple galaxy environment at $z = 0.399$ across a transverse separation of $520$ kpc. The absorber towards Q$0107-025$B has $log N(H I)/cm^{-2} approx 16.8$ (partial Lyman limit) while the absorber towards the other sightline has $N(H I) approx 2$ dex lower. The O VI along both sightlines have comparable column densities and broad $b$-values, whereas the low ionization lines are considerably narrower. The low ionization gas is inconsistent with the O VI when modelled assuming photoionization in a single phase. Along both the lines-of-sight, O VI and coinciding broad H I are best explained through collisional ionization in a cooling plasma with solar metallicity. Ionization models infer $1/10$-th solar metallicity for the pLLS and solar metallicity for the lower column density absorber along the other sightline. Within $pm~250~km~s^{-1}$ and $2$ Mpc of projected distance from the sightlines 12 galaxies are identified, of which 3 are within $300$ kpc. One of them is a dwarf galaxy while the other two are intermediate mass systems at impact parameters of $rho sim (1-4)R_{vir}$. The O VI along both lines-of-sight could be either tracing narrow transition temperature zones at the interface of low ionization gas and the hot halo of nearest galaxy, or a more spread-out warm gas bound to the circumgalactic halo/intragroup medium. This latter scenario leads to a warm gas mass limit of $M gtrsim 4.5 times 10^{9}$ M$_odot$.
90 - Celine Peroux 2016
We present new MUSE observations of quasar field Q2131-1207 with a log N(HI)=19.50+/-0.15 sub-DLA at z_abs=0.42980. We detect four galaxies at a redshift consistent with that of the absorber where only one was known before this study. Two of these are star forming galaxies, while the ones further away from the quasar (>140 kpc) are passive galaxies. We report the metallicities of the HII regions of the closest objects (12+log(O/H)=8.98+/-0.02 and 8.32+/-0.16) to be higher or equivalent within the errors to the metallicity measured in absorption in the neutral phase of the gas (8.15+/-0.20). For the closest object, a detailed morpho-kinematic analysis indicates that it is an inclined large rotating disk with V_max=200+/-3 km/s. We measure the masses to be M_dyn=7.4+/-0.4 x 10^10 M_sun and M_halo=2.9+/-0.2 x 10^12 M_sun. Some of the gas seen in absorption is likely to be co-rotating with the halo of that object, possibly due to a warped disk. The azimuthal angle between the quasar line of sight and the projected major axis of the galaxy on the sky is 12+/-1 degrees which indicates that some other fraction of the absorbing gas might be associated with accreting gas. This is further supported by the galaxy to gas metallicity difference. Based on the same arguments, we exclude outflows as a possibility to explain the gas in absorption. The four galaxies form a large structure (at least 200 kpc wide) consistent with a filament or a galaxy group so that a fraction of the absorption could be related to intra-group gas.
103 - Andrew J. Fox 2008
(Abridged) With the goal of investigating the nature of OVI absorbers at high redshifts, we study the effects of proximity to the background quasar. In a sample of sixteen quasars at z(QSO) between 2.14 and 2.87 observed at 6.6 km/s resolution with VLT/UVES, we detect 35 OVI absorption-line systems lying within 8000 km/s of z(QSO). The systems can be categorized into 9 strong and 26 weak OVI absorbers. The strong absorbers are defined by the presence of either broad, fully saturated OVI absorption or partial coverage of the continuum source, and have log N(OVI)>~15.0; these systems are intrinsic to the AGN. The weak (narrow) systems show no partial coverage or saturation, and are characterized by log N(OVI)<14.5 and have a median total velocity width of only 42 km/s. The incidence dN/dz of weak OVI systems within 2000 km/s of the quasar is 42+/-12. Between 2000 and 8000 km/s, dN/dz falls to 14+/-4, equal to the incidence of intervening OVI absorbers. Whereas the accompanying H I and C IV column densities are significantly lower (by a mean of ~1 dex) in the weak OVI absorbers within 2000 km/s of z(QSO) than in those at larger velocities, the OVI column densities display no dependence on proximity. Furthermore, significant offsets between the HI and OVI centroids in ~50% of the weak absorbers imply that (at least in these cases) the HI and OVI are not formed in the same phase of gas. In summary, we find no firm evidence that quasar radiation influences the OVI-bearing gas, suggesting the OVI is collisionally ionized rather than photoionized, possibly in the multi-phase halos of foreground galaxies. Non-equilibrium collisional ionization models are needed to explain the low temperatures in the absorbing gas, which are implied by narrow line widths (b<14 km/s) in over half of the observed OVI components.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا