Do you want to publish a course? Click here

Quark and gluon orbital angular momentum: Where are we?

92   0   0.0 ( 0 )
 Added by C\\'edric Lorc\\'e
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

The orbital angular momentum of quarks and gluons contributes significantly to the proton spin budget and attracted a lot of attention in the recent years, both theoretically and experimentally. We summarize the various definitions of parton orbital angular momentum together with their relations with parton distributions functions. In particular, we highlight current theoretical puzzles and give some prospects.



rate research

Read More

We present a general analysis of the orbital angular momentum (OAM) distribution of gluons $L_g(x)$ inside the nucleon with particular emphasis on the small-$x$ region. We derive a novel operator representation of $L_g(x)$ in terms of Wilson lines and argue that it is approximately proportional to the gluon helicity distribution $L_g(x) approx -2Delta G(x)$ at small-$x$. We also compute longitudinal single spin asymmetry in exclusive diffractive dijet production in lepton-nucleon scattering in the next-to-eikonal approximation and show that the asymmetry is a direct probe of the gluon helicity/OAM distribution as well as the QCD odderon exchange.
62 - Matthias Burkardt 2020
The difference between the quark orbital angular momentum (OAM) defined in light-cone gauge (Jaffe-Manohar) compared to defined using a local manifestly gauge invariant operator (Ji) is interpreted in terms of the change in quark OAM as the quark leaves the target in a DIS experiment.
We show that quark orbital angular momentum is directly related to off-forward correlation functions which include intrinsic transverse momentum corresponding to a derivative with respect to the transverse coordinates. Its possible contribution to scattering processes is therefore of higher twist and vanishes in the forward limit. The relation of OAM to other twist 2 and 3 distributions known in the literature is derived and formalized by an unintegrated sum rule.
We review the status of searches for sterile neutrinos in the $sim 1$ eV range, with an emphasis on the latest results from short baseline oscillation experiments and how they fit within sterile neutrino oscillation models. We present global fit results to a three-active-flavor plus one-sterile-flavor model (3+1), where we find an improvement of $Delta chi^2=35$ for 3 additional parameters compared to a model with no sterile neutrino. This is a 5$sigma$ improvement, indicating that an effect that is like that of a sterile neutrino is highly preferred by the data. However we note that separate fits to the appearance and disappearance oscillation data sets within a 3+1 model do not show the expected overlapping allowed regions in parameter space. This tension leads us to explore two options: 3+2, where a second additional mass state is introduced, and a 3+1+decay model, where the $ u_4$ state can decay to invisible particles. The 3+1+decay model, which is also motivated by improving compatibility with cosmological observations, yields the larger improvement, with a $Delta chi^2=8$ for 1 additional parameter beyond the 3+1 model, which is a $2.6sigma$ improvement. Moreover the tension between appearance and disappearance experiments is reduced compared to 3+1, although disagreement remains. In these studies, we use a frequentist approach and also a Bayesean method of finding credible regions. With respect to this tension, we review possible problems with the global fitting method. We note multiple issues, including problems with reproducing the experimental results, especially in the case of experiments that do not provide adequate data releases. We discuss an unexpected 5 MeV excess, observed in the reactor flux energy spectrum, that may be affecting the oscillation interpretation of the short baseline reactor data. We emphasize the care that must be taken in mapping to the true neutrino energy in the case of oscillation experiments that are subject to multiple interaction modes and nuclear effects. We point to problems with the Parameter-Goodness-of-Fit test that is used to quantify the tension. Lastly, we point out that analyses presenting limits often receive less scrutiny that signals. While we provide a snapshot of the status of sterile neutrino searches today and global fits to their interpretation, we emphasize that this is a fast-moving field. We briefly review experiments that are expected to report new data in the immediate future. Lastly, we consider the 5-year horizon, where we propose that decay-at-rest neutrino sources are the best method of finally resolving the confusing situation.
We review the current state of automatic differentiation (AD) for array programming in machine learning (ML), including the different approaches such as operator overloading (OO) and source transformation (ST) used for AD, graph-based intermediate representations for programs, and source languages. Based on these insights, we introduce a new graph-based intermediate representation (IR) which specifically aims to efficiently support fully-general AD for array programming. Unlike existing dataflow programming representations in ML frameworks, our IR naturally supports function calls, higher-order functions and recursion, making ML models easier to implement. The ability to represent closures allows us to perform AD using ST without a tape, making the resulting derivative (adjoint) program amenable to ahead-of-time optimization using tools from functional language compilers, and enabling higher-order derivatives. Lastly, we introduce a proof of concept compiler toolchain called Myia which uses a subset of Python as a front end.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا