Do you want to publish a course? Click here

Angular momentum fluxes caused by Lambda-effect and meridional circulation structure of the Sun

96   0   0.0 ( 0 )
 Added by Valery Pipin
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using mean-field hydrodynamic models of the solar angular momentum balance we show that the non-monotonic latitudinal dependence of the radial angular momentum fluxes caused by Lambda-effect can affect the number of the meridional circulation cells stacking in radial direction in the solar convection zone. In particular, our results show the possibility of a complicated triple-cell meridional circulation structure. This pattern consists of two large counterclockwise circulation cells (the N-hemisphere) and a smaller clockwise cell located at low latitudes at the bottom of the convection zone.



rate research

Read More

We studied the solar surface flows (differential rotation and meridional circulation) using a magnetic element feature tracking technique by which the surface velocity is obtained using magnetic field data. We used the line-of-sight magnetograms obtained by the Helioseismic and Magnetic Imager aboard the Solar Dynamics Observatory from 01 May 2010 to 16 August 2017 (Carrington rotations 2096 to 2193) and tracked the magnetic element features every hour. Using our method, we estimated the differential rotation velocity profile. We found rotation velocities of $sim$ 30 and -170 m s$^{-1}$ at latitudes of 0$^{circ}$ and 60$^{circ}$ in the Carrington rotation frame, respectively. Our results are consistent with previous results obtained by other methods, such as direct Doppler, time-distance helioseismology, or cross correlation analyses. We also estimated the meridional circulation velocity profile and found that it peaked at $sim$12 m s$^{-1}$ at a latitude of 45$^{circ}$, which is also consistent with previous results. The dependence of the surface flow velocity on the magnetic field strength was also studied. In our analysis, the magnetic elements having stronger and weaker magnetic fields largely represent the characteristics of the active region remnants and solar magnetic networks, respectively. We found that magnetic elements having a strong (weak) magnetic field show faster (slower) rotation speed. On the other hand, magnetic elements having a strong (weak) magnetic field show slower (faster) meridional circulation velocity. These results might be related to the Suns internal dynamics.
A key component of solar interior dynamics is the meridional circulation (MC), whose poleward component in the surface layers has been well observed. Time-distance helioseismic studies of the deep structure of MC, however, have yielded conflicting inferences. Here, following a summary of existing results we show how a large center-to-limb systematics (CLS) in the measured travel times of acoustic waves affect the inferences through an analysis of frequency dependence of CLS, using data from the Helioseismic and Doppler Imager (HMI) onboard Solar Dynamics Observatory (SDO). Our results point to the residual systematics in travel times as a major cause of differing inferences on the deep structure of MC.
Using a 3D global solver of the linearized Euler equations, we model acoustic oscillations over background velocity flow fields of single-cell meridional circulation with deep and shallow return flows as well as a double-cell meridional circulation profile. The velocities are generated using a mean-field hydrodynamic and dynamo model -- moving through the regimes with minimal parameter changes; counter-rotation near the base of the tachocline is induced by sign inversion of the non-diffusive action of turbulent Reynolds stresses ($Lambda$-effect) due to the radial inhomogeneity of the Coriolis number. By mimicking the stochastic excitation of resonant modes in the convective interior, we simulate realization noise present in solar observations. Using deep-focusing to analyze differences in travel-time signatures between the three regimes, as well as comparing to solar observations, we show that current helioseismology techniques may offer important insights about the location of the return flow, however, that it may not be possible to definitively distinguish between profiles of single-cell or double-cell meridional circulation.
Surface observations indicate that the speed of the solar meridional circulation in the photosphere varies in anti-phase with the solar cycle. The current explanation for the source of this variation is that inflows into active regions alter the global surface pattern of the meridional circulation. When these localized inflows are integrated over a full hemisphere, they contribute to the slow down of the axisymmetric poleward horizontal component. The behavior of this large scale flow deep inside the convection zone remains largely unknown. Present helioseismic techniques are not sensitive enough to capture the dynamics of this weak large scale flow. Moreover, the large time of integration needed to map the meridional circulation inside the convection zone, also masks some of the possible dynamics on shorter timescales. In this work we examine the dynamics of the meridional circulation that emerges from a 3D MHD global simulation of the solar convection zone. Our aim is to assess and quantify the behavior of meridional circulation deep inside the convection zone, where the cyclic large-scale magnetic field can reach considerable strength. Our analyses indicate that the meridional circulation morphology and amplitude are both highly influenced by the magnetic field, via the impact of magnetic torques on the global angular momentum distribution. A dynamic feature induced by these magnetic torques is the development of a prominent upward flow at mid latitudes in the lower convection zone that occurs near the equatorward edge of the toroidal bands and that peaks during cycle maximum. Globally, the dynamo-generated large-scale magnetic field drives variations in the meridional flow, in stark contrast to the conventional kinematic flux transport view of the magnetic field being advected passively by the flow.
To better understand the observed distributions of rotation rate and magnetic activity of sun-like and low-mass stars, we derive a physically motivated scaling for the dependence of the stellar-wind torque on Rossby number. The torque also contains an empirically-derived scaling with stellar mass (and radius), which provides new insight into the mass-dependence of stellar magnetic and wind properties. We demonstrate that this new formulation explains why the lowest mass stars are observed to maintain rapid rotation for much longer than solar-mass stars, and simultaneously, why older populations exhibit a sequence of slowly rotating stars, in which the low-mass stars rotate more slowly than solar-mass stars. The model also reproduces some previously unexplained features in the period-mass diagram for the Kepler field, notably: the particular shape of the upper envelope of the distribution, suggesting that ~95% of Kepler field stars with measured rotation periods are younger than ~4 Gyr; and the shape of the lower envelope, corresponding to the location where stars transition between magnetically saturated and unsaturated regimes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا