Do you want to publish a course? Click here

A Pair of Giant Planets around the Evolved Intermediate-Mass Star HD 47366: Multiple Circular Orbits or a Mutually Retrograde Configuration

61   0   0.0 ( 0 )
 Added by Bunei Sato
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the detection of a double planetary system around the evolved intermediate-mass star HD 47366 from precise radial-velocity measurements at Okayama Astrophysical Observatory, Xinglong Station, and Australian Astronomical Observatory. The star is a K1 giant with a mass of 1.81+-0.13M_sun, a radius of 7.30+-0.33R_sun, and solar metallicity. The planetary system is composed of two giant planets with minimum mass of 1.75^{+0.20}_{-0.17}Mjup and 1.86^{+0.16}_{-0.15}Mjup, orbital period of 363.3^{+2.5}_{-2.4} d and 684.7^{+5.0}_{-4.9} d, and eccentricity of 0.089^{+0.079}_{-0.060} and 0.278^{+0.067}_{-0.094}, respectively, which are derived by a double Keplerian orbital fit to the radial-velocity data. The system adds to the population of multi-giant-planet systems with relatively small orbital separations, which are preferentially found around evolved intermediate-mass stars. Dynamical stability analysis for the system revealed, however, that the best-fit orbits are unstable in the case of a prograde configuration. The system could be stable if the planets were in 2:1 mean-motion resonance, but this is less likely considering the observed period ratio and eccentricity. A present possible scenario for the system is that both of the planets have nearly circular orbits, namely the eccentricity of the outer planet is less than ~0.15, which is just within 1.4sigma of the best-fit value, or the planets are in a mutually retrograde configuration with a mutual orbital inclination larger than 160 degree.



rate research

Read More

We report the detection of a double planetary system orbiting around the evolved intermediate-mass star HD 4732 from precise Doppler measurements at Okayama Astrophysical Observatory (OAO) and Anglo-Australian Observatory (AAO). The star is a K0 subgiant with a mass of 1.7 M_sun and solar metallicity. The planetary system is composed of two giant planets with minimum mass of msini=2.4 M_J, orbital period of 360.2 d and 2732 d, and eccentricity of 0.13 and 0.23, respectively. Based on dynamical stability analysis for the system, we set the upper limit on the mass of the planets to be about 28 M_J (i>5 deg) in the case of coplanar prograde configuration.
We report on the discovery of a planetary companion candidate with a minimum mass Msini = 4.6 M_J orbiting the K2 III giant star HD 175370 (KIC 007940959). This star was a target in our program to search for planets around a sample of 95 giant stars observed with Kepler. This detection was made possible using precise stellar radial velocity measurements of HD 175370 taken over five years and four months using the coude echelle spectrograph of the 2-m Alfred Jensch Telescope and the fibre-fed echelle spectrograph HERMES of the 1.2-m Mercator Telescope. Our radial velocity measurements reveal a periodic (349.5 days) variation with a semi-amplitude K = 133 m/s, superimposed on a long-term trend. A low-mass stellar companion with an orbital period of ~88 years in a highly eccentric orbit and a planet in a Keplerian orbit with an eccentricity e = 0.22 are the most plausible explanation of the radial velocity variations. However, we cannot exclude the existence of stellar envelope pulsations as a cause for the low-amplitude radial velocity variations and only future continued monitoring of this system may answer this uncertainty. From Kepler photometry we find that HD 175370 is most likely a low-mass red-giant branch or asymptotic-giant branch star.
82 - John D. Monnier 2019
We present the first images of the transition disk around the close binary system HD 34700A in polarized scattered light using the Gemini Planet Imager instrument on Gemini South. The J and H band images reveal multiple spiral-arm structures outside a large (R = 0.49 = 175 au) cavity along with a bluish spiral structure inside the cavity. The cavity wall shows a strong discontinuity and we clearly see significant non-azimuthal polarization Uphi consistent with multiple scattering within a disk at an inferred inclination ~42deg. Radiative transfer modeling along with a new Gaia distance suggest HD 37400A is a young (~5 Myr) system consisting of two intermediate-mass (~2Msun) stars surrounded by a transitional disk and not a solar-mass binary with a debris disk as previously classified. Conventional assumptions of the dust-to-gas ratio would rule out a gravitational instability origin to the spirals while hydrodynamical models using the known external companion or a hypothetical massive protoplanet in the cavity both have trouble reproducing the relatively large spiral arm pitch angles (~30deg) without fine tuning of gas temperature. We explore the possibility that material surrounding a massive protoplanet could explain the rim discontinuity after also considering effects of shadowing by an inner disk. Analysis of archival Hubble Space Telescope data suggests the disk is rotating counterclockwise as expected from the spiral arm structure and revealed a new low-mass companion at 6.45 separation. We include an appendix which sets out clear definitions of Q, U, Qphi, Uphi, correcting some confusion and errors in the literature.
(shorter version)The aim of this work is to search for planets around intermediate-mass stars in open clusters by using RV data obtained with HARPS from an extensive survey with more than 15 years of observations for a sample of 142 giant stars in 17 open clusters. We present the discovery of a periodic RV signal compatible with the presence of a planet candidate in the 1.15 Gyr open cluster IC4651 orbiting the 2.06 M$_odot$ star No. 9122. If confirmed, the planet candidate would have a minimum mass of 7.2 M$_{J}$ and a period of 747 days. However, we also find that the FWHM of the CCF varies with a period close to the RV, casting doubts on the planetary nature of the signal. We also provide refined parameters for the previously discovered planet around NGC2423 No. 3 but show evidence that the BIS of the CCF is correlated with the RV during some of the observing periods. This fact advises us that this might not be a real planet and that the RV variations could be caused by stellar activity and/or pulsations. Finally, we show that the previously reported signal by a brown dwarf around NGC4349 No. 127 is presumably produced by stellar activity modulation. The long-term monitoring of several red giants in open clusters has allowed us to find periodic RV variations in several stars. However, we also show that the follow-up of this kind of stars should last more than one orbital period to detect long-term signals of stellar origin. This work warns that although it is possible to detect planets around red giants, large-amplitude, long-period RV modulations do exist in such stars that can mimic the presence of an orbiting planetary body. Therefore, we need to better understand how such RV modulations behave as stars evolve along the RGB and perform a detailed study of all the possible stellar-induced signals (e.g. spots, pulsations, granulation) to comprehend the origin of RV variations.
We report the detections of two substellar companions orbiting around evolved intermediate-mass stars from precise Doppler measurements at Subaru Telescope and Okayama Astrophysical Observatory. HD 145457 is a K0 giant with a mass of 1.9 M_sun and has a planet of minimum mass m_2sini=2.9 M_J orbiting with period of P=176 d and eccentricity of e=0.11. HD 180314 is also a K0 giant with 2.6 M_sun and hosts a substellar companion of m_2sin i=22 M_J, which falls in brown-dwarf mass regime, in an orbit with P=396 d and e=0.26. HD 145457 b is one of the innermost planets and HD 180314 b is the seventh candidate of brown-dwarf-mass companion found around intermediate-mass evolved stars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا