No Arabic abstract
In this work, we investigate the possibility of probing a class of neutrino mass models at the LHC proton-proton collisions with 8 and 14 TeV energies. The existence of lepton flavor violating interactions for a singlet charged scalar, $S^{pm}$, that couples to the leptons could induce many processes such as $pprightarrowell_{alpha}^{pm}ell_{beta}^{mp}+slashed E $. Using the processes with $ell_{alpha}ell_{beta}=ee,emu,mumu$, we found that an inclusive cut on the $M_{T2}$ event variable is vital in our analysis and leads to an effective suppression of the large Standard Model background. Our results show possible detectability of the charged scalars effect, especially at the $sqrt{s}= 14~text{TeV}$.
In this work we prob a class of neutrino mass models at both Large Hadron Collider (LHC) energies 8 TeV and 14 TeV. The focus will be on the new introduced interaction terms between a singlet charged scalar, $S^{pm}$, and leptons leading to different final states $pprightarrowell_{alpha}^{pm}ell_{beta}^{mp}$ +$slashed E$ with $ell_{alpha}ell_{beta}=ee,emu,mumu$ that implies lepton flavor violation (LFV). An accurate cut on the $M_{T2}$ eventvariable is found to be crucial for an effective suppression of the large Standard Model background. The obtained results can be translated into a possible detectability of the charged scalars effect..
Trilepton event represents one of the probes of the new physics at high energy colliders. In this talk, we consider the search for processes with final states $ell_{alpha}^{pm }ell_{beta}^{pm}ell_{gamma}^{mp}$ + $slashed{E}_{T}$ where ${alpha}$, ${beta}$, ${gamma}$= $e,mu,tau$, via the production of singlet charged scalar $S^{pm}$ which arise in a class of radiative neutrino mass models. We discuss the opposite sign same flavor leptons signal, as well as the background free channel in view to get a significant excess at $sqrt{s}$= 8 TeV and $sqrt{s}$ = 14 TeV at the hadron collider LHC.
In this work, we probe a class of neutrino mass models through the lepton flavor violating interactions of a singlet charged scalar, $S^{pm}$ at the LHC proton-proton collisions with 8 TeV and 14 TeV energies. This scalar couples to the leptons and induces many processes such as $pprightarrowell^{pm}ell^{pm}ell^{mp}+slashed{E}_{T}$. In our analysis we discuss the opposite sign same flavor leptons signal, as well as the background free channel with the tau contribution which can enhance the signal/background ratio for center of mass energies $sqrt{s}$= 8 TeV and $sqrt{s}$ = 14 TeV.
Neutrinos in the Standard Model (SM) are considered to be massless which is in contradiction with the evidence from the neutrino oscillation data. These experiments established that at least two SM neutrinos have non-zero masses and that individual lepton numbers are violated. This is strong evidence of new physics beyond the SM that should be responsible for generating non zero mass for the neutrinos. In this work, we study the collider phenomenology of an extension of the SM where neutrinos are generated radiatively at three-loop. We show that the production of same-sign dilepton at lepton colliders (such as FCC-ee and ILC) can be used to probe the Majorana nature of neutrinos in this class of models.
In this short review, we see some typical models in which light neutrino masses are generated at the loop level. These models involve new Higgs bosons whose Yukawa interactions with leptons are constrained by the neutrino oscillation data. Predictions about flavor structures of $ell to overline{ell}_1 ell_2 ell_3$ and leptonic decays of new Higgs bosons via the constrained Yukawa interactions are briefly summarized in order to utilize such Higgs as a probe of $ u$ physics.