Do you want to publish a course? Click here

Highly efficient optical quantum memory with long coherence time in cold atoms

254   0   0.0 ( 0 )
 Added by Ben Buchler
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Optical quantum memory is an essential element for long distance quantum communication and photonic quantum computation protocols. The practical implementation of such protocols requires an efficient quantum memory with long coherence time. Beating the no-cloning limit, for example, requires efficiencies above 50%. An ideal optical fibre loop has a loss of 50% in 100 $mu$ s, and until now no universal quantum memory has beaten this time-efficiency limit. Here, we report results of a gradient echo memory (GEM) experiment in a cold atomic ensemble with a 1/e coherence time up to 1ms and maximum efficiency up to 87$pm$2% for short storage times. Our experimental data demonstrates greater than 50% efficiency for storage times up to 0.6ms. Quantum storage ability is verified beyond the ideal fibre limit using heterodyne tomography of small coherent states.



rate research

Read More

104 - Chengyuan Wang , Ya Yu , Yun Chen 2020
The spatial modes of light, carrying a quantized amount of orbital angular momentum (OAM), is one of the excellent candidates that provides access to high-dimensional quantum states, which essentially makes it promising towards building high-dimensional quantum networks. In this paper, we report the storage and retrieval of photonic qubits encoded with OAM state in the cold atomic ensemble, achieving an average conditional fidelity above 98% and retrieval efficiency around 65%. The photonic OAM qubits are encoded with weak coherent states at the single-photon level and the memory is based on electromagnetically induced transparency in an elongated cold rubidium atomic ensemble. Our work constitutes an efficient node that is needed towards high dimensional and large scale quantum networks.
Quantum memory for flying optical qubits is a key enabler for a wide range of applications in quantum information science and technology. A critical figure of merit is the overall storage-and-retrieval efficiency. So far, despite the recent achievements of efficient memories for light pulses, the storage of qubits has suffered from limited efficiency. Here we report on a quantum memory for polarization qubits that combines an average conditional fidelity above 99% and an efficiency equal to (68$pm$ 2)%, thereby demonstrating a reversible qubit mapping where more information is retrieved than lost. The qubits are encoded with weak coherent states at the single-photon level and the memory is based on electromagnetically-induced transparency in an elongated laser-cooled ensemble of cesium atoms, spatially multiplexed for dual-rail storage. This implementation preserves high optical depth on both rails, without compromise between multiplexing and storage efficiency. Our work provides an efficient node for future tests of quantum network functionalities and advanced photonic circuits.
The burgeoning fields of quantum computing and quantum key distribution have created a demand for a quantum memory. The gradient echo memory scheme is a quantum memory candidate for light storage that can boast efficiencies approaching unity, as well as the flexibility to work with either two or three level atoms. The key to this scheme is the frequency gradient that is placed across the memory. Currently the three level implementation uses a Zeeman gradient and warm atoms. In this paper we model a new gradient creation mechanism - the ac Stark effect - to provide an improvement in the flexibility of gradient creation and field switching times. We propose this scheme in concert with a move to cold atoms (~1 mK). These temperatures would increase the storage times possible, and the small ensemble volumes would enable large ac Stark shifts with reasonable laser power. We find that memory bandwidths on the order of MHz can be produced with experimentally achievable laser powers and trapping volumes, with high precision in gradient creation and switching times on the order of nanoseconds possible. By looking at the different decoherence mechanisms present in this system we determine that coherence times on the order of 10s of milliseconds are possible, as are delay-bandwidth products of approximately 50 and efficiencies over 90%.
182 - S.A. Moiseev , , W. Tittel 2009
We examine a quantum memory scheme based on controllable dephasing of atomic coherence of a non-resonant, inhomogeneously broadened Raman transition. We show that it generalizes the physical conditions for time-reversible interaction between light and atomic ensembles from weak to strong fields and from linear to non-linear interactions. We also develop a unified framework for different realizations exploiting either controlled reversible inhomogeneous broadening or atomic frequency combs, and discuss new aspects related to storage and manipulation of quantum states.
Significant advances in coherence have made superconducting quantum circuits a viable platform for fault-tolerant quantum computing. To further extend capabilities, highly coherent quantum systems could act as quantum memories for these circuits. A useful quantum memory must be rapidly addressable by qubits, while maintaining superior coherence. We demonstrate a novel superconducting microwave cavity architecture that is highly robust against major sources of loss that are encountered in the engineering of circuit QED systems. The architecture allows for near-millisecond storage of quantum states in a resonator while strong coupling between the resonator and a transmon qubit enables control, encoding, and readout at MHz rates. The observed coherence times constitute an improvement of almost an order of magnitude over those of the best available superconducting qubits. Our design is an ideal platform for studying coherent quantum optics and marks an important step towards hardware-efficient quantum computing with Josephson junction-based quantum circuits.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا