New criteria to detect singularities in experimental incompressible flows


Abstract in English

We introduce two new singularity detection criteria based on the work of Duchon-Robert (DR) [J. Duchon and R. Robert, Nonlinearity, 13, 249 (2000)], and Eyink [G.L. Eyink, Phys. Rev. E, 74 (2006)] which allow for the local detection of singularities with scaling exponent $hleqslant1/2$ in experimental flows, using PIV measurements. We show that in order to detect such singularities, one does not need to have access to the whole velocity field inside a volume but can instead look for them from stereoscopic particle image velocimetry (SPIV) data on a plane. We discuss the link with the Beale-Kato-Majda (BKM) [J.T. Beale, T. Kato, A. Majda, Commun. Math. Phys., 94, 61 (1984)] criterion, based on the blowup of vorticity, which applies to singularities of Navier-Stokes equations. We illustrate our discussion using tomographic PIV data obtained inside a high Reynolds number flow generated inside the boundary layer of a wind tunnel. In such a case, BKM and DR criteria are well correlated with each other.

Download