No Arabic abstract
Automatic description generation from natural images is a challenging problem that has recently received a large amount of interest from the computer vision and natural language processing communities. In this survey, we classify the existing approaches based on how they conceptualize this problem, viz., models that cast description as either generation problem or as a retrieval problem over a visual or multimodal representational space. We provide a detailed review of existing models, highlighting their advantages and disadvantages. Moreover, we give an overview of the benchmark image datasets and the evaluation measures that have been developed to assess the quality of machine-generated image descriptions. Finally we extrapolate future directions in the area of automatic image description generation.
Machine learning approaches applied to NLP are often evaluated by summarizing their performance in a single number, for example accuracy. Since most test sets are constructed as an i.i.d. sample from the overall data, this approach overly simplifies the complexity of language and encourages overfitting to the head of the data distribution. As such, rare language phenomena or text about underrepresented groups are not equally included in the evaluation. To encourage more in-depth model analyses, researchers have proposed the use of multiple test sets, also called challenge sets, that assess specific capabilities of a model. In this paper, we develop a framework based on this idea which is able to generate controlled perturbations and identify subsets in text-to-scalar, text-to-text, or data-to-text settings. By applying this framework to the GEM generation benchmark, we propose an evaluation suite made of 80 challenge sets, demonstrate the kinds of analyses that it enables and shed light onto the limits of current generation models.
Infertility is becoming an issue for an increasing number of couples. The most common solution, in vitro fertilization, requires embryologists to carefully examine light microscopy images of human oocytes to determine their developmental potential. We propose an automatic system to improve the speed, repeatability, and accuracy of this process. We first localize individual oocytes and identify their principal components using CNN (U-Net) segmentation. Next, we calculate several descriptors based on geometry and texture. The final step is an SVM classifier. Both the segmentation and classification training is based on expert annotations. The presented approach leads to a classification accuracy of 70%.
The paper surveys evaluation methods of natural language generation (NLG) systems that have been developed in the last few years. We group NLG evaluation methods into three categories: (1) human-centric evaluation metrics, (2) automatic metrics that require no training, and (3) machine-learned metrics. For each category, we discuss the progress that has been made and the challenges still being faced, with a focus on the evaluation of recently proposed NLG tasks and neural NLG models. We then present two examples for task-specific NLG evaluations for automatic text summarization and long text generation, and conclude the paper by proposing future research directions.
Motivated by the application of fact-level image understanding, we present an automatic method for data collection of structured visual facts from images with captions. Example structured facts include attributed objects (e.g., <flower, red>), actions (e.g., <baby, smile>), interactions (e.g., <man, walking, dog>), and positional information (e.g., <vase, on, table>). The collected annotations are in the form of fact-image pairs (e.g.,<man, walking, dog> and an image region containing this fact). With a language approach, the proposed method is able to collect hundreds of thousands of visual fact annotations with accuracy of 83% according to human judgment. Our method automatically collected more than 380,000 visual fact annotations and more than 110,000 unique visual facts from images with captions and localized them in images in less than one day of processing time on standard CPU platforms.
Recent works have shown that supervised models often exploit data artifacts to achieve good test scores while their performance severely degrades on samples outside their training distribution. Contrast sets (Gardneret al., 2020) quantify this phenomenon by perturbing test samples in a minimal way such that the output label is modified. While most contrast sets were created manually, requiring intensive annotation effort, we present a novel method which leverages rich semantic input representation to automatically generate contrast sets for the visual question answering task. Our method computes the answer of perturbed questions, thus vastly reducing annotation cost and enabling thorough evaluation of models performance on various semantic aspects (e.g., spatial or relational reasoning). We demonstrate the effectiveness of our approach on the GQA dataset and its semantic scene graph image representation. We find that, despite GQAs compositionality and carefully balanced label distribution, two high-performing models drop 13-17% in accuracy compared to the original test set. Finally, we show that our automatic perturbation can be applied to the training set to mitigate the degradation in performance, opening the door to more robust models.