Do you want to publish a course? Click here

Surface Albedo and Spectral Variability of Ceres

176   0   0.0 ( 0 )
 Added by Jian-Yang Li
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Previous observations suggested that Ceres has active but possibly sporadic water outgassing, and possibly varying spectral characteristics in a time scale of months. We used all available data of Ceres collected in the past three decades from the ground and the Hubble Space Telescope, and the newly acquired images by Dawn Framing Camera to search for spectral and albedo variability on Ceres, in both a global scale and local regions, particularly the bright spots inside Occator crater, over time scales of a few months to decades. Our analysis has placed an upper limit on the possible temporal albedo variation on Ceres. Sporadic water vapor venting, or any possibly ongoing activity on Ceres, is not significant enough to change the albedo or the area of the bright features in Occator crater by >15%, or the global albedo by >3% over various time scales that we searched. Recently reported spectral slope variations can be explained by changing Sun-Ceres-Earth geometry. The active area on Ceres is less than 1 km$^2$, too small to cause global albedo and spectral variations detectable in our data. Impact ejecta due to impacting projectiles of tens of meters in size like those known to cause observable changes to the surface albedo on Asteroid Scheila cannot cause detectable albedo change on Ceres due to its relatively large size and strong gravity. The water vapor activity on Ceres is independent of Ceres heliocentric distance, rulling out the possibility of comet-like sublimation process as a possible mechanism driving the activity.



rate research

Read More

Bright features have been recently discovered by Dawn on Ceres, which extend previous photometric and Space Telescope observations. These features should produce distortions of the line profiles of the reflected solar spectrum and therefore an apparent radial velocity variation modulated by the rotation of the dwarf planet. Here we report on two sequences of observations of Ceres performed in the nights of 31 July, 26-27 August 2015 by means of the high-precision HARPS spectrograph at the 3.6-m La Silla ESO telescope. The observations revealed a quite complex behaviour which likely combines a radial velocity modulation due to the rotation with an amplitude of approx +/- 6 m/s and an unexpected diurnal effect. The latter changes imply changes in the albedo of Occators bright features due to the blaze produced by the exposure to solar radiation. The short-term variability of Ceres albedo is on timescales ranging from hours to months and can both be confirmed and followed by means of dedicated radial velocity observations.
Low-albedo, hydrated objects dominate the list of the largest asteroids. These objects have varied spectral shapes in the 3-$mu$m region, where diagnostic absorptions due to volatile species are found. Dawns visit to Ceres has extended the view shaped by ground-based observing, and shown that world to be a complex one, potentially still experiencing geological activity. We present 33 observations from 2.2-4.0 $mu$m of eight large (greater than 200 km diameter) asteroids from the C spectral complex, with spectra inconsistent with the hydrated minerals we see in meteorites. We characterize their absorption band characteristics via polynomial and Gaussian fits to test their spectral similarity to Ceres, the asteroid 24 Themis (thought to be covered in ice frost), and the asteroid 51 Nemausa (spectrally similar to the CM meteorites). We confirm most of the observations are inconsistent with what is seen in meteorites and require additional absorbers. We find clusters in band centers that correspond to Ceres- and Themis-like spectra, but no hiatus in the distribution suitable for use to simply distinguish between them. We also find a range of band centers in the spectra that approaches what is seen on Comet 67P. Finally, variation is seen between observations for some objects, with the variation on 324 Bamberga consistent with hemispheric-level difference in composition. Given the ubiquity of objects with 3-$mu$m spectra unlike what we see in meteorites, and the similarity of those spectra to the published spectra of Ceres and Themis, these objects appear much more to be archetypes than outliers.
Context: The dwarf planet (1) Ceres - next target of the NASA Dawn mission - is the largest body in the asteroid main belt; although several observations of this body have been performed so far, the presence of surface water ice is still questioned. Aims: Our goal is to better understand the surface composition of Ceres, and to constrain the presence of exposed water ice. Methods: We acquired new visible and near-infrared spectra at the Telescopio Nazionale Galileo (TNG, La Palma, Spain), and reanalyzed literature spectra in the 3-$mu$m region. Results: We obtained the first rotationally-resolved spectroscopic observations of Ceres at visible wavelengths. Visible spectra taken one month apart at almost the same planetocentric coordinates show a significant slope variation (up to 3 %/10$^3AA$). A faint absorption centered at 0.67 $mu$m, possibly due to aqueous alteration, is detected in a subset of our spectra. The various explanations in the literature for the 3.06-$mu$m feature can be interpreted as due to a variable amount of surface water ice at different epochs. Conclusions: The remarkable short-term temporal variability of the visible spectral slope, and the changing shape of the 3.06-$mu$m band, can be hints of different amounts of water ice exposed on the surface of Ceres. This would be in agreement with the recent detection by the Herschel Space Observatory of localized and transient sources of water vapour over this dwarf planet.
In order to investigate the causes of different spectral slope in ccps, different grain-sizes of Ceres analogue mixtures were produced, heated to remove absorption of atmospheric water, and spectrally analyzed. First, the end-members which compose the Ceres surface (using the antigorite as Mg-phyllosilicate, the NH4-montmorillonite as NH4-phyllosilicate, the dolomite as carbonate and the graphite as dark component), were mixed, obtaining mixtures with different relative abundance, and identifying the mixture with the reflectance spectrum most similar to the average Ceres spectrum. The mixtures were obtained with grain size of 0-25 {mu}m, 25-50 mic and 50-100 mic, were heated and spectrally analysed at T= 300 K and T=200 K (typical for surface Ceres temperature during VIR observations). The most similar Ceres analogue mixture is composed of dolomite (18%), graphite (27%), antigorite (32%) and NH4-montmorillonite (29%) and the results of this work suggest that this mixture is more similar to the Ceres youngest region than to the Ceres average, in particular for the negative slope of spectrum. Small variation in the composition and grain size of end-members need to be considered, in addition to the occurrence of a dark component dispersed in fine size. Furthermore, the positive spectral slope that characterizes the mean Ceres spectrum can be obtained by the application of some processes simulating the space weathering on Ceres (as micro-meteoritic impacts and solar wind irradiation), i.e. laser and ion irradiation. As conclusion, youngest ccps on Ceresare probably composed by fresher and weakly processed mixture with fine dark material intimately dispersed: as a result, the reflectance spectra of youngest material show a negative slope in the 1.2-1.9 mic range. The redder slope observed in the older ccps is probably the consequence of the space weathering effects on fresher material
Variations and spatial distributions of bright and dark material on dwarf planet Ceres play a key role in understanding the processes that have led to its present surface composition. We define limits for bright and dark material in order to distinguish them consistently, based on the reflectance of the average surface using Dawn Framing Camera data. A systematic classification of four types of bright material is presented based on their spectral properties, composition, spatial distribution, and association with specific geomorphological features. We found obvious correlations of reflectance with spectral shape (slopes) and age; however, this is not unique throughout the bright spots. Although impact features show generally more extreme reflectance variations, several areas can only be understood in terms of inhomogeneous distribution of composition as inferred from Dawn Visible and Infrared Spectrometer data. Additional material with anomalous composition and spectral properties are rare. The identification of the composition and origin of the dark, particularly the darkest material, remains to be explored. The spectral properties and the morphology of the dark sites suggest an endogenic origin, but it is not clear whether they are more or less primitive surficial exposures or excavated subsurface but localized material. The reflectance, spectral properties, inferred composition, and geologic context collectively suggest that the bright and dark material tends to gradually change toward the average surface over time. This could be because of multiple processes, i.e., impact gardening/space weathering, and lateral mixing, including thermal and aqueous alteration, accompanied by changes in composition and physical properties such as grain size, surface temperature, and porosity (compaction).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا