On supports of expansive measures


Abstract in English

We prove that a homeomorphism of a compact metric space has an expansive measure cite{ms} if and only if it has many ones with invariant support. We also study homeomorphisms for which the expansive measures are dense in the space of Borel probability measures. It is proved that these homeomorphisms exhibit a dense set of Borel probability measures which are expansive with full support. Therefore, their sets of heteroclinic points has no interior and the spaces supporting them have no isolated points.

Download