Do you want to publish a course? Click here

Accelerated diffusion by chaotic fluctuation in probability in photoexcitation transfer system

79   0   0.0 ( 0 )
 Added by Song-Ju Kim Dr.
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report a new accelerated diffusion phenomenon that is produced by a one-dimensional ran- dom walk in which the flight probability to one of the two directions (i.e., bias) oscillates dynam- ically in periodic, quasiperiodic, and chaotic manners. The probability oscillation dynamics can be physically observed in nanoscale photoexcitation transfer in a quantum-dot network, where the existence probability of an exciton at the bottom energy level of a quantum dot fluctuates dif- ferently with a parameter setting. We evaluate the ensemble average of the time-averaged mean square displacement (ETMSD) of the time series obtained from the quantum-dot network model that generates various oscillatory behaviors because the ETMSD exhibits characteristic changes depending on the fluctuating bias; in the case of normal diffusion, the asymptotic behavior of the ETMSD is proportional to the time (i.e., a linear growth function), whereas it grows nonlinearly with an exponent greater than 1 in the case of superdiffusion. We find that the diffusion can be accelerated significantly when the fluctuating bias is characterized as weak chaos owing to the transient nonstationarity of its biases, in which the spectrum contains high power at low frequen- cies. By introducing a simplified model of our random walk, which exhibits superdiffusion as well as normal diffusion, we explain the mechanism of the accelerated diffusion by analyzing the mean square displacement.



rate research

Read More

We explore the behaviour of chaotic oscillators in hierarchical networks coupled to an external chaotic system whose intrinsic dynamics is dissimilar to the other oscillators in the network. Specifically, each oscillator couples to the mean-field of the oscillators below it in the hierarchy, and couples diffusively to the oscillator above it in the hierarchy. We find that coupling to one dissimilar external system manages to suppress the chaotic dynamics of all the oscillators in the network at sufficiently high coupling strength. This holds true irrespective of whether the connection to the external system is direct or indirect through oscillators at another level in the hierarchy. Investigating the synchronization properties show that the oscillators have the same steady state at a particular level of hierarchy, whereas the steady state varies across different hierarchical levels. We quantify the efficacy of control by estimating the fraction of random initial states that go to fixed points, a measure analogous to basin stability. These quantitative results indicate the easy controllability of hierarchical networks of chaotic oscillators by an external chaotic system, thereby suggesting a potent method that may help design control strategies.
189 - Caroline L. Wormell 2021
Many important high-dimensional dynamical systems exhibit complex chaotic behaviour. Their complexity means that their dynamics are necessarily comprehended under strong reducing assumptions. It is therefore important to have a clear picture of these reducing assumptions range of validity. The highly influential chaotic hypothesis of Gallavotti and Cohen states that the large-scale dynamics of high-dimensional systems are effectively hyperbolic, which implies many felicitous statistical properties. We demonstrate, contrary to the chaotic hypothesis, the existence of non-hyperbolic large-scale dynamics in a mean-field coupled system. To do this we reduce the system to its thermodynamic limit, which we approximate numerically with a Chebyshev Galerkin transfer operator discretisation. This enables us to obtain a high precision estimate of a homoclinic tangency, implying a failure of hyperbolicity. Robust non-hyperbolic behaviour is expected under perturbation. As a result, the chaotic hypothesis should not be assumed to hold in all systems, and a better understanding of the domain of its validity is required.
Chaotic diffusion is supposed to be responsible for orbital instabilities in planetary systems after the dissipation of the protoplanetary disk, and a natural consequence of irregular motion. In this paper we show that resonant multi-planetary systems, despite being highly chaotic, not necessarily exhibit significant diffusion in phase space, and may still survive virtually unchanged over timescales comparable to their age.Using the GJ-876 system as an example, we analyze the chaotic diffusion of the outermost (and less massive) planet. We construct a set of stability maps in the surrounding regions of the Laplace resonance. We numerically integrate ensembles of close initial conditions, compute Poincare maps and estimate the chaotic diffusion present in this system. Our results show that, the Laplace resonance contains two different regions: an inner domain characterized by low chaoticity and slow diffusion, and an outer one displaying larger values of dynamical indicators. In the outer resonant domain, the stochastic borders of the Laplace resonance seem to prevent the complete destruction of the system. We characterize the diffusion for small ensembles along the parameters of the outermost planet. Finally, we perform a stability analysis of the inherent chaotic, albeit stable Laplace resonance, by linking the behavior of the resonant variables of the configurations to the different sub-structures inside the three-body resonance.
We show that the synchronized states of two systems of identical chaotic maps subject to either, a common drive that acts with a probability p in time or to the same drive acting on a fraction p of the maps, are similar. The synchronization behavior of both systems can be inferred by considering the dynamics of a single chaotic map driven with a probability p. The synchronized states for these systems are characterized on their common space of parameters. Our results show that the presence of a common external drive for all times is not essential for reaching synchronization in a system of chaotic oscillators, nor is the simultaneous sharing of the drive by all the elements in the system. Rather, a crucial condition for achieving synchronization is the sharing of some minimal, average information by the elements in the system over long times.
The noise-enhanced trapping is a surprising phenomenon that has already been studied in chaotic scattering problems where the noise affects the physical variables but not the parameters of the system. Following this research, in this work we provide strong numerical evidence to show that an additional mechanism that enhances the trapping arises when the noise influences the energy of the system. For this purpose, we have included a source of Gaussian white noise in the Henon-Heiles system, which is a paradigmatic example of open Hamiltonian system. For a particular value of the noise intensity, some trajectories decrease their energy due to the stochastic fluctuations. This drop in energy allows the particles to spend very long transients in the scattering region, increasing their average escape times. This result, together with the previously studied mechanisms, points out the generality of the noise-enhanced trapping in chaotic scattering problems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا