The pseudo chiral magnetic effect in QED3


Abstract in English

Chiral magnetic effect (CME) has been suggested to take place during peripheral relativistic heavy ion collisions. However, signals of its realization are not yet independent of ambiguities and thus probing the non-trivial topological vacua of quantum chromodynamics (QCD) is still an open issue. Weyl materials, particularly graphene, on the other hand, are effectively described at low energies by the degrees of freedom of quantum electrodynamics in two spatial dimensions, QED3. This theory shares with QCD some interesting features, like confinement and chiral symmetry breaking and also possesses a non-trivial vacuum structure. In this regard, an analog of the CME is proposed to take place in graphene under the influence of an in-plane magnetic field in which the pseudo-spin or flavor label of charge carriers is participant of the effect, rather than the actual spin. In this contribution, we review the parallelisms and differences between the CME and the so-called pseudo chiral magnetic effect, PCME.

Download