Do you want to publish a course? Click here

Microlensing by single black-holes in the Galaxy

225   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The longest microlensing events provide enough information to estimate the mass and distance of the lens. Among hundreds of millions of stars which were monitored for many years by the OGLE project we selected those with clear parallax effect and derived the mass function of lensing objects in the Milky Way. We also found candidates for microlensing stellar-mass single black holes. We discuss how Gaia superb astrometry will help in measuring masses of remnants in currently on-going and future microlensing events.



rate research

Read More

We investigate the impact of combining Gaia astrometry from space with precise, high cadence OGLE photometry from the ground. For the archival event OGLE3-ULENS-PAR-02, which is likely a black hole, we simulate a realistic astrometric time-series of Gaia measurements and combine it with the real photometric data collected by the OGLE project. We predict that at the end of the nominal 5 years of the Gaia mission, for the events brighter than $Gapprox15.5$ mag at the baseline, caused by objects heavier than 10 $M_{odot}$, it will be possible to unambiguously derive masses of the lenses, with accuracy between a few to 15 per cent. We find that fainter events ($G<17.5$) can still have their lens masses determined, provided that they are heavier than 30 $M_{odot}$. We estimate that the rate of astrometric microlensing events caused by the stellar-origin black holes is $approx 4 times 10^{-7} , rm yr^{-1}$, which implies, that after 5 years of Gaia operation and $approx 5 times 10^6$ bright sources in Gaia, it will be possible to identify few such events in the Gaia final catalogues.
Primordial black holes (PBHs), hypothesized to be the result of density fluctuations during the early universe, are candidates for dark matter. When microlensing background stars, they cause a transient apparent enhancement of the flux. Measuring these signals with optical telescopes is a powerful method to constrain the PBH abundance in the range of $10^{-10},M_{odot}$ to $10^{1},M_{odot}$. Especially for galactic stars, the finiteness of the sources needs to be taken into account. For low PBH masses (in this work $lesssim 10^{-8},M_{odot}$) the average duration of the detectable event decreases with the mass $langle t_erangle propto M_{mathrm{PBH}}$. For $M_{mathrm{PBH}}approx 10^{-11},M_{odot}$ we find $langle t_erangle lesssim,1 mathrm{s}$. For this reason, fast sampling detectors may be required as they could enable the detection of low mass PBHs. Current limits are set with sampling speeds of 2 minutes to 24 hours in the optical regime. Ground-based Imaging Atmospheric Cherenkov telescopes (IACTs) are optimized to detect the $sim$ns long optical Cherenkov signals induced by atmospheric air showers. As shown recently, the very-large mirror area of these instruments provides very high signal to noise ratio for fast optical transients ($ll 1,$s) such as asteroid occultations. We investigate whether optical observations by IACTs can contribute to extending microlensing limits to the unconstrained mass range $M_{mathrm{PBH}}<10^{-10}M_odot$. We discuss the limiting factors to perform these searches for each telescope type. We calculate the rate of expected detectable microlensing events in the relevant mass range for the current and next-generation IACTs considering realistic source parameters.
We present an open-access database which includes a synthetic catalog of black holes in the Milky Way. To calculate evolution of single and binary stars we used updated population synthesis code StarTrack. We applied a new model of star formation history and chemical evolution of Galactic disk, bulge and halo synthesized from observational and theoretical data. We find that at the current moment Milky Way (disk+bulge+halo) contains about 1.2 x 10^8 single black holes with average mass of about 14 Msun and 9.3 x 10^6 BHs in binary systems with average mass of 19 Msun. We present basic statistical properties of BH populations such as distributions of single and binary BH masses, velocities, orbital parameters or numbers of BH binary systems in different evolutionary configurations. We find that the most massive BHs are formed in mergers of binary systems, such as BH-MS, BH+He, BH-BH. The metallicity of stellar population has a significant impact on the final BH mass due to the stellar winds. Therefore the most massive single BH in our simulation, 113 Msun, originates from a merger of a helium star and a black hole in a low metallicity stellar environment in Galactic halo. The most massive BH in binary system is 60 Msun and was also formed in Galactic halo. We constrain that only 0.006% of total Galactic halo mass (including dark matter) could be hidden in the form of stellar origin BHs which are not detectable by current observational surveys. Galactic binary BHs are minority (10% of all Galactic BHs) and most of them are in BH-BH systems. The current Galactic merger rates for two considered common envelope models which are: 3-81 Myr^-1 for BH-BH, 1-9 Myr^-1, for BH-NS and 14-59 Myr^-1 for NS-NS systems. Data files are available at https://bhc.syntheticuniverse.org/.
Luminous accreting stellar mass and supermassive black holes produce power-law continuum X-ray emission from a compact central corona. Reverberation time lags occur due to light travel time-delays between changes in the direct coronal emission and corresponding variations in its reflection from the accretion flow. Reverberation is detectable using light curves made in different X-ray energy bands, since the direct and reflected components have different spectral shapes. Larger, lower frequency, lags are also seen and are identified with propagation of fluctuations through the accretion flow and associated corona. We review the evidence for X-ray reverberation in active galactic nuclei and black hole X-ray binaries, showing how it can be best measured and how it may be modelled. The timescales and energy-dependence of the high frequency reverberation lags show that much of the signal is originating from very close to the black hole in some objects, within a few gravitational radii of the event horizon. We consider how these signals can be studied in the future to carry out X-ray reverberation mapping of the regions closest to black holes.
It has recently been proposed that massive primordial black holes (PBH) could constitute all of the dark matter, providing a novel scenario of structure formation, with early reionization and a rapid growth of the massive black holes at the center of galaxies and dark matter halos. The scenario arises from broad peaks in the primordial power spectrum that give both a spatially clustered and an extended mass distribution of PBH. The constraints from the observed microlensing events on the extended mass function have already been addressed. Here we study the impact of spatial clustering on the microlensing constraints. We find that the bounds can be relaxed significantly for relatively broad mass distributions if the number of primordial black holes within each cluster is typically above one hundred. On the other hand, even if they arise from individual black holes within the cluster, the bounds from CMB anisotropies are less stringent due to the enhanced black hole velocity in such dense clusters. This way, the window between a few and ten solar masses has opened up for PBH to comprise the totality of the dark matter.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا