On the local genus distribution of graph embeddings


Abstract in English

The $2$-cell embeddings of graphs on closed surfaces have been widely studied. It is well known that ($2$-cell) embedding a given graph $G$ on a closed orientable surface is equivalent to cyclically ordering the edges incident to each vertex of $G$. In this paper, we study the following problem: given a genus $g$ embedding $epsilon$ of the graph $G$ and a vertex of $G$, how many different ways of reembedding the vertex such that the resulting embedding $epsilon$ is of genus $g+Delta g$? We give formulas to compute this quantity and the local minimal genus achieved by reembedding. In the process we obtain miscellaneous results. In particular, if there exists a one-face embedding of $G$, then the probability of a random embedding of $G$ to be one-face is at least $prod_{ uin V(G)}frac{2}{deg( u)+2}$, where $deg( u)$ denotes the vertex degree of $ u$. Furthermore we obtain an easy-to-check necessary condition for a given embedding of $G$ to be an embedding of minimum genus.

Download