No Arabic abstract
For most of the state-of-the-art speech enhancement techniques, a spectrogram is usually preferred than the respective time-domain raw data since it reveals more compact presentation together with conspicuous temporal information over a long time span. However, the short-time Fourier transform (STFT) that creates the spectrogram in general distorts the original signal and thereby limits the capability of the associated speech enhancement techniques. In this study, we propose a novel speech enhancement method that adopts the algorithms of discrete wavelet packet transform (DWPT) and nonnegative matrix factorization (NMF) in order to conquer the aforementioned limitation. In brief, the DWPT is first applied to split a time-domain speech signal into a series of subband signals without introducing any distortion. Then we exploit NMF to highlight the speech component for each subband. Finally, the enhanced subband signals are joined together via the inverse DWPT to reconstruct a noise-reduced signal in time domain. We evaluate the proposed DWPT-NMF based speech enhancement method on the MHINT task. Experimental results show that this new method behaves very well in prompting speech quality and intelligibility and it outperforms the convnenitional STFT-NMF based method.
When a signal is recorded in an enclosed room, it typically gets affected by reverberation. This degradation represents a problem when dealing with audio signals, particularly in the field of speech signal processing, such as automatic speech recognition. Although there are some approaches to deal with this issue that are quite satisfactory under certain conditions, constructing a method that works well in a general context still poses a significant challenge. In this article, we propose a method based on convolutive nonnegative matrix factorization that mixes two penalizers in order to impose certain characteristics over the time-frequency components of the restored signal and the reverberant components. An algorithm for implementing the method is described and tested. Comparisons of the results against those obtained with state of the art methods are presented, showing significant improvement.
This paper presents a statistical method of single-channel speech enhancement that uses a variational autoencoder (VAE) as a prior distribution on clean speech. A standard approach to speech enhancement is to train a deep neural network (DNN) to take noisy speech as input and output clean speech. Although this supervised approach requires a very large amount of pair data for training, it is not robust against unknown environments. Another approach is to use non-negative matrix factorization (NMF) based on basis spectra trained on clean speech in advance and those adapted to noise on the fly. This semi-supervised approach, however, causes considerable signal distortion in enhanced speech due to the unrealistic assumption that speech spectrograms are linear combinations of the basis spectra. Replacing the poor linear generative model of clean speech in NMF with a VAE---a powerful nonlinear deep generative model---trained on clean speech, we formulate a unified probabilistic generative model of noisy speech. Given noisy speech as observed data, we can sample clean speech from its posterior distribution. The proposed method outperformed the conventional DNN-based method in unseen noisy environments.
When we place microphones close to a sound source near other sources in audio recording, the obtained audio signal includes undesired sound from the other sources, which is often called cross-talk or bleeding sound. For many audio applications including onstage sound reinforcement and sound editing after a live performance, it is important to reduce the bleeding sound in each recorded signal. However, since microphones are spatially apart from each other in this situation, typical phase-aware blind source separation (BSS) methods cannot be used. We propose a phase-insensitive method for blind bleeding-sound reduction. This method is based on time-channel nonnegative matrix factorization, which is a BSS method using only amplitude spectrograms. With the proposed method, we introduce the gamma-distribution-based prior for leakage levels of bleeding sounds. Its optimization can be interpreted as maximum a posteriori estimation. The experimental results of music bleeding-sound reduction indicate that the proposed method is more effective for bleeding-sound reduction of music signals compared with other BSS methods.
In this paper we address speaker-independent multichannel speech enhancement in unknown noisy environments. Our work is based on a well-established multichannel local Gaussian modeling framework. We propose to use a neural network for modeling the speech spectro-temporal content. The parameters of this supervised model are learned using the framework of variational autoencoders. The noisy recording environment is supposed to be unknown, so the noise spectro-temporal modeling remains unsupervised and is based on non-negative matrix factorization (NMF). We develop a Monte Carlo expectation-maximization algorithm and we experimentally show that the proposed approach outperforms its NMF-based counterpart, where speech is modeled using supervised NMF.
Multichannel blind audio source separation aims to recover the latent sources from their multichannel mixtures without supervised information. One state-of-the-art blind audio source separation method, named independent low-rank matrix analysis (ILRMA), unifies independent vector analysis (IVA) and nonnegative matrix factorization (NMF). However, the spectra matrix produced from NMF may not find a compact spectral basis. It may not guarantee the identifiability of each source as well. To address this problem, here we propose to enhance the identifiability of the source model by a minimum-volume prior distribution. We further regularize a multichannel NMF (MNMF) and ILRMA respectively with the minimum-volume regularizer. The proposed methods maximize the posterior distribution of the separated sources, which ensures the stability of the convergence. Experimental results demonstrate the effectiveness of the proposed methods compared with auxiliary independent vector analysis, MNMF, ILRMA and its extensions.