Do you want to publish a course? Click here

Discovery of unconventional charge density wave at the surface of K0.9Mo6O17

395   0   0.0 ( 0 )
 Added by Adam Kaminski
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use Angle Resolved Photoemission Spectroscopy (ARPES), Raman spectroscopy, Low Energy Electron Diffraction (LEED) and x-ray scattering to reveal an unusual electronically mediated charge density wave (CDW) in K0.9Mo6O17. Not only does K0.9Mo6O17 lack signatures of electron-phonon coupling, but it also hosts an extraordinary surface CDW, with TS CDW =220 K nearly twice that of the bulk CDW, TB CDW =115 K. While the bulk CDW has a BCS-like gap of 12 meV, the surface gap is ten times larger and well in the strong coupling regime. Strong coupling behavior combined with the absence of signatures of strong electron-phonon coupling indicates that the CDW is likely mediated by electronic interactions enhanced by low dimensionality.



rate research

Read More

The evolution of the charge carrier concentrations and mobilities are examined across the charge-density-wave (CDW) transition in TiSe2. Combined quantum oscillation and magnetotransport measurements show that a small electron pocket dominates the electronic properties at low temperatures whilst an electron and hole pocket contribute at room temperature. At the CDW transition, an abrupt Fermi surface reconstruction and a minimum in the electron and hole mobilities are extracted from two-band and Kohler analysis of magnetotransport measurements. The minimum in the mobilities is associated with the overseen role of scattering from the softening CDW mode. With the carrier concentrations and dynamics dominated by the CDW and the associated bosonic mode, our results highlight TiSe2 as a prototypical system to study the Fermi surface reconstruction at a density-wave transition.
The transition metal dichalcogenide 1T-TaS2 attract growing attention because of the formation of rich density-wave (DW) and superconducting transitions. However, the origin of the incommensurate DW state at the highest temperature (~ 550 K), which is the parent state of the rich physical phenomena, is still uncovered. Here, we present a natural explanation for the triple-q incommensurate DW in 1T-TaS2 based on the first-principles Hubbard model with on-site U. We apply the paramagnon interference mechanism that gives the nematic order in Fe-based superconductors. The derived order parameter has very unique characters: (i) the orbital-selective nature, and (ii) the unconventional sign-reversal in both momentum and energy spaces. The present study will be useful for understanding rich physics in 1T-TaS2, 1T-VSe2, and other transition metal dichalcogenides.
The low temperature phase (LTP) of alpha-(BEDT-TTF)_2KHg(SCN)_4 salt is known for its surprising angular dependent magnetoresistance (ADMR), which has been studied intensively in the last decade. However, the nature of the LTP has not been understood until now. Here we analyse theoretically ADMR in unconventional (or nodal) charge density wave (UCDW). In magnetic field the quasiparticle spectrum in UCDW is quantized, which gives rise to spectacular ADMR. The present model accounts for many striking features of ADMR data in alpha-(BEDT-TTF)_2KHg(SCN)_4.
To understand the origin of unconventional charge-density-wave (CDW) states in cuprate superconductors, we establish the self-consistent CDW equation, and analyze the CDW instabilities based on the realistic Hubbard model, without assuming any $q$-dependence and the form factor. Many higher-order many-body processes, which are called the vertex corrections, are systematically generated by solving the CDW equation. When the spin fluctuations are strong, the uniform $q=0$ nematic CDW with $d$-form factor shows the leading instability. The axial nematic CDW instability at $q = Q_a = (delta,0)$ ($delta approx pi/2$) is the second strongest, and its strength increases under the static uniform CDW order. The present theory predicts that uniform CDW transition emerges at a high temperature, and it stabilize the axial $q = Q_a$ CDW at $T = T_{CDW}$. It is confirmed that the higher-order Aslamazov-Larkin processes cause the CDW orders at both $q = 0$ and $Q_a$.
Symmetry breaking and the emergence of order is one of the most fascinating phenomena in condensed matter physics. It leads to a plethora of intriguing ground states found in antiferromagnets, Mott insulators, superconductors, and density-wave systems. Exploiting states of matter far from equilibrium can provide even more striking routes to symmetry-lowered, ordered states. Here, we demonstrate for the case of elemental chromium that moderate ultrafast photo-excitation can transiently enhance the charge-density-wave (CDW) amplitude by up to 30% above its equilibrium value, while strong excitations lead to an oscillating, large-amplitude CDW state that persists above the equilibrium transition temperature. Both effects result from dynamic electron-phonon interactions, providing an efficient mechanism to selectively transform a broad excitation of the electronic order into a well defined, long-lived coherent lattice vibration. This mechanism may be exploited to transiently enhance order parameters in other systems with coupled degrees of freedom.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا