Hybrid nanophotonics based on metal-dielectric nanostructures unifies the advantages of plasmonics and all-dielectric nanophotonics providing strong localization of light, magnetic optical response and specifically designed scattering properties. Here we demonstrate a novel approach for fabrication of ordered hybrid nanostructures via femtosecond laser melting of asymmetrical metal-dielectric (Au-Si) nanoparticles created by lithographical methods. The approach allows selective reshaping of the metal components of the hybrid nanoparticles without affecting dielectric ones. We apply the developed approach for tuning of the hybrid nanostructures scattering properties in the visible range. The experimental results are supported by molecular dynamics simulation and numerical solving of Maxwell equations.