Do you want to publish a course? Click here

Probing Carrier Transport and Structure-property Relationship of Highly Ordered Organic Semiconductors at Two-dimensional Limit

104   0   0.0 ( 0 )
 Added by Xinran Wang
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

One of the basic assumptions in organic field-effect transistors, the most fundamental device unit in organic electronics, is that charge transport occurs two-dimensionally in the first few molecular layers near the dielectric interface. Although the mobility of bulk organic semiconductors has increased dramatically, direct probing of intrinsic charge transport in the two-dimensional limit has not been possible due to excessive disorders and traps in ultrathin organic thin films. Here, highly ordered mono- to tetra-layer pentacene crystals are realized by van der Waals (vdW) epitaxy on hexagonal BN. We find that the charge transport is dominated by hopping in the first conductive layer, but transforms to band-like in subsequent layers. Such abrupt phase transition is attributed to strong modulation of the molecular packing by interfacial vdW interactions, as corroborated by quantitative structural characterization and density functional theory calculations. The structural modulation becomes negligible beyond the second conductive layer, leading to a mobility saturation thickness of only ~3nm. Highly ordered organic ultrathin films provide a platform for new physics and device structures (such as heterostructures and quantum wells) that are not possible in conventional bulk crystals.



rate research

Read More

Synchrotron X-ray diffraction patterns were measured and analyzed for a polycrystalline sample of the room-temperature ferromagnet Sr3.12Er0.88Co4O10.5 from 300 to 650 K, from which two structural phase transitions were found to occur successively. The higher-temperature transition at 509 K is driven by ordering of the oxygen vacancies, which is closely related to the metallic state at high temperatures. The lower-temperature transition at 360 K is of first order, at which the ferromagnetic state suddenly appears with exhibiting a jump in magnetization and resistivity. Based on the refined structure, possible spin and orbital models for the magnetic order are proposed.
96 - H. Popli , J. Wang , X. Liu 2021
We have experimentally tested the hypothesis of free charge carrier mediated spin-transport in the small molecule organic semiconductor Alq3 at room temperature. A spin current was pumped into this material by pulsed ferromagnetic resonance of an adjacent NiFe layer, while a charge current resulting from this spin current via the inverse spin-Hall effect (ISHE) was detected in a Pt layer adjacent on the other side of the Alq3 layer, confirming a pure spin current through the Alq3 layer. Charge carrier spin states in Alq3, were then randomized by simultaneous application of electron paramagnetic resonance (EPR). No influence of the EPR excitation on the ISHE current was found, implying that spin-transport is not mediated by free charge-carriers in Alq3.
The magneto-electronic field effects in organic semiconductors at high magnetic fields are described by field-dependent mixing between singlet and triplet states of weakly bound charge carrier pairs due to small differences in their Lande g-factors that arise from the weak spin-orbit coupling in the material. In this work, we corroborate theoretical models for the high-field magnetoresistance of organic semiconductors, in particular of diodes made of the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) at low temperatures, by conducting magnetoresistance measurements along with multi-frequency continuous-wave electrically detected magnetic resonance experiments. The measurements were performed on identical devices under similar conditions in order to independently assess the magnetic field-dependent spin-mixing mechanism, the so-called {Delta}g mechanism, which originates from differences in the charge-carrier g-factors induced by spin-orbit coupling.
99 - Yao Yao 2019
Different from traditional semiconductors, the organic semiconductors normally possess moderate many-body interactions with respect to charge, exciton, spin and phonons. In particular, the diagonal electron-phonon couplings give rise to the spatial localization and the off-diagonal couplings refer to the delocalization. With the competition between them, the electrons are dispersive in a finite extent and unfavorable towards thermal equilibrium. In this context, the quantities from the statistical mechanics such as the entropy have to be reexamined. In order to bridge the localization-delocalization duality and the device performance in organic semiconductors, the quantum heat engine model is employed to describe the charge, exciton and spin dynamics. We adopt the adaptive time-dependent density matrix renormalization group algorithm to calculate the time evolution of the out-of-time-ordered correlator (OTOC), a quantum dynamic measurement of the entanglement entropy, in three models with two kinds of competing many-body interactions: two-bath lattice model with a single electron, Frenkel-charge transfer mixed model, and the Merrifield model for singlet fission. We respectively investigate the parameter regime that the system is in the many-body localization (MBL) phase indicated by the behavior of OTOC. It is recognized that the novel effects of coherent electron hopping, the ultrafast charge separation and the dissociation of triplet pairs are closely related to the MBL effect. Our investigation unifies the intrinsic mechanisms correlating to charge, exciton and spin into a single framework of quantum entanglement entropy, which may help clarify the complicated and diverse phenomena in organic semiconductors.
A detailed understanding of charged defects in two-dimensional semiconductors is needed for the development of ultrathin electronic devices. Here, we study negatively charged acceptor impurities in monolayer WS$_2$ using a combination of scanning tunnelling spectroscopy and large-scale atomistic electronic structure calculations. We observe several localized defect states of hydrogenic wave function character in the vicinity of the valence band edge. Some of these defect states are bound, while others are resonant. The resonant states result from the multi-valley valence band structure of WS$_2$, whereby localized states originating from the secondary valence band maximum at $Gamma$ hybridize with continuum states from the primary valence band maximum at K/K$^{prime}$. Resonant states have important consequences for electron transport as they can trap mobile carriers for several tens of picoseconds.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا