Density of 4-edge paths in graphs with fixed edge density


Abstract in English

We investigate the number of 4-edge paths in graphs with a fixed number of vertices and edges. An asymptotically sharp upper bound is given to this quantity. The extremal construction is the quasi-star or the quasi-clique graph, depending on the edge density. An easy lower bound is also proved. This answer resembles the classic theorem of Ahlswede and Katona about the maximal number of 2-edge paths, and a recent theorem of Kenyon, Radin, Ren and Sadun about k-edge stars.

Download