No Arabic abstract
We show that trapezoids with identical Neumann spectra are congruent up to rigid motions of the plane. The proof is based on heat trace invariants and some new wave trace invariants associated to certain diffractive billiard trajectories. The reason we can only treat the Neumann case is that the wave trace is more singular for the Neumann case compared to the Dirichlet case. This is a new observation which is interesting on its own.
We prove the unitary equivalence of the inverse of the Krein--von Neumann extension (on the orthogonal complement of its kernel) of a densely defined, closed, strictly positive operator, $Sgeq epsilon I_{mathcal{H}}$ for some $epsilon >0$ in a Hilbert space $mathcal{H}$ to an abstract buckling problem operator. In the concrete case where $S=bar{-Delta|_{C_0^infty(Omega)}}$ in $L^2(Omega; d^n x)$ for $Omegasubsetmathbb{R}^n$ an open, bounded (and sufficiently regular) domain, this recovers, as a particular case of a general result due to G. Grubb, that the eigenvalue problem for the Krein Laplacian $S_K$ (i.e., the Krein--von Neumann extension of $S$), [ S_K v = lambda v, quad lambda eq 0, ] is in one-to-one correspondence with the problem of {em the buckling of a clamped plate}, [ (-Delta)^2u=lambda (-Delta) u text{in} Omega, quad lambda eq 0, quad uin H_0^2(Omega), ] where $u$ and $v$ are related via the pair of formulas [ u = S_F^{-1} (-Delta) v, quad v = lambda^{-1}(-Delta) u, ] with $S_F$ the Friedrichs extension of $S$. This establishes the Krein extension as a natural object in elasticity theory (in analogy to the Friedrichs extension, which found natural applications in quantum mechanics, elasticity, etc.).
The Neumann-Poincare operator is a boundary-integral operator associated with harmonic layer potentials. This article proves the existence of eigenvalues within the essential spectrum for the Neumann-Poincare operator for certain Lipschitz curves in the plane with reflectional symmetry, when considered in the functional space in which it is self-adjoint. The proof combines the compactness of the Neumann-Poincare operator for curves of class $C^{2,alpha}$ with the essential spectrum generated by a corner. Eigenvalues corresponding to even (odd) eigenfunctions are proved to lie within the essential spectrum of the odd (even) component of the operator when a $C^{2,alpha}$ curve is perturbed by inserting a small corner.
We derive isospectral flows of the mass density in the string boundary value problem corresponding to general boundary conditions. In particular, we show that certain class of rational flows produces in a suitable limit all flows generated by polynomials in negative powers of the spectral parameter. We illustrate the theory with concrete examples of isospectral flows of discrete mass densities which we prove to be Hamiltonian and for which we provide explicit solutions of equations of motion in terms of Stieltjes continued fractions and Hankel determinants.
We prove that the second positive Neumann eigenvalue of a bounded simply-connected planar domain of a given area does not exceed the first positive Neumann eigenvalue on a disk of a twice smaller area. This estimate is sharp and attained by a sequence of domains degenerating to a union of two identical disks. In particular, this result implies the Polya conjecture for the second Neumann eigenvalue. The proof is based on a combination of analytic and topological arguments. As a by-product of our method we obtain an upper bound on the second eigenvalue for conformally round metrics on odd-dimensional spheres.
In the first (and abstract) part of this survey we prove the unitary equivalence of the inverse of the Krein--von Neumann extension (on the orthogonal complement of its kernel) of a densely defined, closed, strictly positive operator, $Sgeq varepsilon I_{mathcal{H}}$ for some $varepsilon >0$ in a Hilbert space $mathcal{H}$ to an abstract buckling problem operator. This establishes the Krein extension as a natural object in elasticity theory (in analogy to the Friedrichs extension, which found natural applications in quantum mechanics, elasticity, etc.). In the second, and principal part of this survey, we study spectral properties for $H_{K,Omega}$, the Krein--von Neumann extension of the perturbed Laplacian $-Delta+V$ (in short, the perturbed Krein Laplacian) defined on $C^infty_0(Omega)$, where $V$ is measurable, bounded and nonnegative, in a bounded open set $Omegasubsetmathbb{R}^n$ belonging to a class of nonsmooth domains which contains all convex domains, along with all domains of class $C^{1,r}$, $r>1/2$.