Do you want to publish a course? Click here

Scalable performance in solid-state single-photon sources

100   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The desiderata for an ideal photon source are high brightness, high single-photon purity, and high indistinguishability. Defining brightness at the first collection lens, these properties have been simultaneously demonstrated with solid-state sources, however absolute source efficiencies remain close to the 1% level, and indistinguishability only demonstrated for photons emitted consecutively on the few nanosecond scale. Here we employ deterministic quantum dot-micropillar devices to demonstrate solid-state single-photon sources with scalable performance. In one device, an absolute brightness at the output of a single-mode fibre of 14% and purities of 97.1-99.0% are demonstrated. When non-resontantly excited, it emits a long stream of photons that exhibit indistinguishability up to 70%---above the classical limit of 50%---even after 33 consecutively emitted photons, a 400 ns separation between them. Resonant excitation in other devices results in near-optimal indistinguishability values: 96% at short timescales, remaining at 88% in timescales as large as 463 ns, after 39 emitted photons. The performance attained by our devices brings solid-state sources into a regime suitable for scalable implementations.



rate research

Read More

Single-photons are key elements of many future quantum technologies, be it for the realisation of large-scale quantum communication networks for quantum simulation of chemical and physical processes or for connecting quantum memories in a quantum computer. Scaling quantum technologies will thus require efficient, on-demand, sources of highly indistinguishable single-photons. Semiconductor quantum dots inserted in photonic structures are ultrabright single photon sources, but the photon indistinguishability is limited by charge noise induced by nearby surfaces. The current state of the art for indistinguishability are parametric down conversion single-photon sources, but they intrinsically generate multiphoton events and hence must be operated at very low brightness to maintain high single photon purity. To date, no technology has proven to be capable of providing a source that simultaneously generates near-unity indistinguishability and pure single photons with high brightness. Here, we report on such devices made of quantum dots in electrically controlled cavity structures. We demonstrate on-demand, bright and ultra-pure single photon generation. Application of an electrical bias on deterministically fabricated devices is shown to fully cancel charge noise effects. Under resonant excitation, an indistinguishability of $0.9956pm0.0045$ is evidenced with a $g^{2}(0)=0.0028pm0.0012$. The photon extraction of $65%$ and measured brightness of $0.154pm0.015$ make this source $20$ times brighter than any source of equal quality. This new generation of sources open the way to a new level of complexity and scalability in optical quantum manipulation.
A strong limitation of linear optical quantum computing is the probabilistic operation of two-quantum bit gates based on the coalescence of indistinguishable photons. A route to deterministic operation is to exploit the single-photon nonlinearity of an atomic transition. Through engineering of the atom-photon interaction, phase shifters, photon filters and photon- photon gates have been demonstrated with natural atoms. Proofs of concept have been reported with semiconductor quantum dots, yet limited by inefficient atom-photon interfaces and dephasing. Here we report on a highly efficient single-photon filter based on a large optical non-linearity at the single photon level, in a near-optimal quantum-dot cavity interface. When probed with coherent light wavepackets, the device shows a record nonlinearity threshold around $0.3 pm 0.1$ incident photons. We demonstrate that directly reflected pulses consist of 80% single-photon Fock state and that the two- and three-photon components are strongly suppressed compared to the single-photon one.
Solid-state emitters are excellent candidates for developing integrated sources of single photons. Yet, phonons degrade the photon indistinguishability both through pure dephasing of the zero-phonon line and through phonon-assisted emission. Here, we study theoretically and experimentally the indistinguishability of photons emitted by a semiconductor quantum dot in a microcavity as a function of temperature. We show that a large coupling to a high quality factor cavity can simultaneously reduce the effect of both phonon-induced sources of decoherence. It first limits the effect of pure dephasing on the zero phonon line with indistinguishabilities above $97%$ up to $18$ K. Moreover, it efficiently redirects the phonon sidebands into the zero-phonon line and brings the indistinguishability of the full emission spectrum from $87%$ (resp. $24%$) without cavity effect to more than $99%$ (resp. $76%$) at $0$ K (resp. $20$ K). We provide guidelines for optimal cavity designs that further minimize the phonon-induced decoherence.
In the quest to realize a scalable quantum network, semiconductor quantum dots (QDs) offer distinct advantages including high single-photon efficiency and indistinguishability, high repetition rate (tens of GHz with Purcell enhancement), interconnectivity with spin qubits, and a scalable on-chip platform. However, in the past two decades, the visibility of quantum interference between independent QDs rarely went beyond the classical limit of 50$%$ and the distances were limited from a few meters to kilometers. Here, we report quantum interference between two single photons from independent QDs separated by 302 km optical fiber. The single photons are generated from resonantly driven single QDs deterministically coupled to microcavities. Quantum frequency
Emitters of indistinguishable single photons are crucial for the growing field of quantum technologies. To realize scalability and increase the complexity of quantum optics technologies, multiple independent yet identical single photon emitters are also required. However typical solid-state single photon sources are inherently dissimilar, necessitating the use of electrical feedback or optical cavities to improve spectral overlap between distinct emitters. Here, we demonstrate bright silicon-vacancy (SiV-) centres in low-strain bulk diamond which intrinsically show spectral overlap of up to 91% and near transform-limited excitation linewidths. Our results have impact upon the application of single photon sources for quantum optics and cryptography, and the production of next generation fluorophores for bio-imaging.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا