Near-field Nanoscopy of Thermal Evanescent Waves on Metals


Abstract in English

Intense electromagnetic evanescent fields are thermally excited in near fields on material surfaces (at distances smaller than the wavelength of peak thermal radiation). The property of the fields is of strong interest for it is material-specific and is important for understanding a variety of surface-related effects, such as friction forces, Casimir forces, near-field heat transfer, and surface-coupled molecular dynamics. On metal surfaces, relevance of surface plasmon polaritons (SPlPs), coupled to collective motion of conduction electrons, has attracted strong interest, but has not been explicitly clarified up to the present time. Here, using a passive terahertz (THz) near-field microscope with unprecedented high sensitivity, we unveil detailed nature of thermally generated evanescent fields (wavelength:lamda0~14.5micron) on metals at room temperature. Our experimental results unambiguously indicate that the thermal waves are short-wavelength fluctuating electromagnetic fields, from which relevance of SPlPs is ruled out.

Download