Active Particles on Curved Surfaces


Abstract in English

Recent studies have highlighted the sensitivity of active matter to boundaries and their geometries. Here we develop a general theory for the dynamics and statistics of active particles on curved surfaces and illustrate it on two examples. We first show that active particles moving on a surface with no ability to probe its curvature only exhibit steady-state inhomogeneities in the presence of orientational order. We then consider a strongly confined 3D ideal active gas and compute its steady-state density distribution in a box of arbitrary convex shape.

Download