Euler characteristic reciprocity for chromatic, flow and order polynomials


Abstract in English

The Euler characteristic of a semialgebraic set can be considered as a generalization of the cardinality of a finite set. An advantage of semialgebraic sets is that we can define negative sets to be the sets with negative Euler characteristics. Applying this idea to posets, we introduce the notion of semialgebraic posets. Using negative posets, we establish Stanleys reciprocity theorems for order polynomials at the level of Euler characteristics. We also formulate the Euler characteristic reciprocities for chromatic and flow polynomials.

Download