Do you want to publish a course? Click here

Conductance enlargement in pico-scale electro-burnt graphene nanojunctions

80   0   0.0 ( 0 )
 Added by Colin Lambert Prof
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Provided the electrical properties of electro-burnt graphene junctions can be understood and controlled, they have the potential to underpin the development of a wide range of future sub-10nm electrical devices. We examine both theoretically and experimentally the electrical conductance of electro-burnt graphene junctions at the last stages of nanogap formation. We account for the appearance of a counterintuitive increase in electrical conductance just before the gap forms. This is a manifestation of room-temperature quantum interference and arises from a combination of the semi-metallic band structure of graphene and a crossover from electrodes with multiple-path connectivity to single-path connectivity just prior to breaking. Therefore our results suggest that conductance enlargement prior to junction rupture is a signal of the formation of electro-burnt junctions, with a pico-scale current path formed from a single sp2-bond.



rate research

Read More

Results of an experimental study of palladium nanojunctions in hydrogen environment are presented. Two new hydrogen-related atomic configurations are found, which have a conductances of ~0.5 and ~1 quantum unit (2e^2/h). Phonon spectrum measurements demonstrate that these configurations are situated between electrodes containing dissolved hydrogen. The crucial differences compared to the previously studied Pt-H_2 junctions, and the possible microscopic realizations of the new configurations in palladium-hydrogen atomic-sized contacts are discussed.
Experimental results showing huge negative differential conductance in gold-hydrogen molecular nanojunctions are presented. The results are analyzed in terms of two-level system (TLS) models: it is shown that a simple TLS model cannot produce peaklike structures in the differential conductance curves, whereas an asymmetrically coupled TLS model gives perfect fit to the data. Our analysis implies that the excitation of a bound molecule to a large number of energetically similar loosely bound states is responsible for the peaklike structures. Recent experimental studies showing related features are discussed within the framework of our model.
The conductance of breaking metallic nanojunctions shows plateaus alternated with sudden jumps, corresponding to the stretching of stable atomic configurations and atomic rearrangements, respectively. We investigate the structure of the conductance plateaus both by measuring the voltage dependence of the plateaus slope on individual junctions and by a detailed statistical analysis on a large amount of contacts. Though the atomic discreteness of the junction plays a fundamental role in the evolution of the conductance, we find that the fine structure of the conductance plateaus is determined by quantum interference phenomenon to a great extent.
Atomically thin layers of two-dimensional (2D) materials such as graphene, MoS2 and h-BN have immense potential as sensors and electronic devices thanks to their highly desirable electronic, mechanical, optical and heat transport properties. In particular their extreme stiffness, tensile strength and low density allows for high frequency electronic devices, resonators and ultra-sensitive detectors providing realistic avenues for down-scaling electronic devices and nanoelectromechanical systems (NEMS). Whilst nanoscale morphology and electronic properties of 2D materials can be studied using existing electron or scanning probe microscopy approaches, time-dependant phenomena on the ns and shorter time-scales cannot be readily explored. Here we use the heterodyne principle to reach into this ns time-scale and create a local nanoscale probe for electrostatically induced actuation of a graphene resonator, with amplitude sensitivity down to pm range and time sensitivity in the ns range. We experimentally observed response times of 20-120 ns for resonators with beam lengths of 180 nm to 2.5 um in line with the theoretical predictions for such NEMS devices.
We report a theoretical study suggesting a novel type of electronic switching effect, driven by the geometrical reconstruction of nanoscale graphene-based junctions. We considered junction struc- tures which have alternative metastable configurations transformed by rotations of local carbon dimers. The use of external mechanical strain allows a control of the energy barrier heights of the potential profiles and also changes the reaction character from endothermic to exothermic or vice-versa. The reshaping of the atomic details of the junction encode binary electronic ON or OFF states, with ON/OFF transmission ratio that can reach up to 10^4-10^5. Our results suggest the possibility to design modern logical switching devices or mechanophore sensors, monitored by mechanical strain and structural rearrangements.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا