No Arabic abstract
We investigate the quantization in the Heisenberg representation of a model which represents a simplification of the Hopfield model for dielectric media, where the electromagnetic field is replaced by a scalar field $phi$ and the role of the polarization field is played by a further scalar field $psi$. The model, which is quadratic in the fields, is still characterized by a nontrivial physical content, as the physical particles correspond to the polaritons of the standard Hopfield model of condensed matter physics. Causality is also taken into account and a discussion of the standard interaction representation is also considered.
We investigate the quantisation in the Heisenberg representation of a relativistically covariant version of the Hopfield model for dielectric media, which entails the interaction of the quantum electromagnetic field with the matter dipole fields. The matter fields are represented by a mesoscopic polarization field. A full quantisation of the model is provided in a covariant gauge, with the aim of maintaining explicit relativistic covariance. Breaking of the Lorentz invariance due to the intrinsic presence in the model of a preferred reference frame is also taken into account. Relativistic covariance forces us to deal with the unphysical (scalar and longitudinal) components of the fields, furthermore it introduces, in a more tricky form, the well-known dipole ghost of standard QED in a covariant gauge. In order to correctly dispose of this contribution, we implement a generalized Lautrup trick. Furthermore, causality and the relation of the model with the Wightman axioms are also discussed.
The present work tackles the existence of local gauge symmetries in the setting of Algebraic Quantum Field Theory (AQFT). The net of causal loops, previously introduced by the authors, is a model independent construction of a covariant net of local C*-algebras on any 4-dimensional globally hyperbolic spacetime, aimed to capture some structural properties of any reasonable quantum gauge theory. In fact, representations of this net can be described by causal and covariant connection systems, and the local gauge transformations arise as maps between equivalent connection systems. The present paper completes these abstract results, realizing QED as a representation of the net of causal loops in Minkowski spacetime. More precisely, we map the quantum electromagnetic field F{mu}{ u}, not free in general, into a representation of the net of causal loops and show that the corresponding connection system and local gauge transformations find a counterpart in terms of F{mu}{ u}.
A systematic study of the spinor representation by means of the fermionic physical space is accomplished and implemented. The spinor representation space is shown to be constrained by the Fierz-Pauli-Kofink identities among the spinor bilinear covariants. A robust geometric and topological structure can be manifested from the spinor space, wherein, for instance, the first and second homotopy groups play prominent roles on the underlying physical properties, associated to the fermionic fields.
We construct a version of the complex Heisenberg algebra based on the idea of endless analytic continuation. In particular, we exhibit an integral formula for the product of resurgent operators with algebraic singularities. This algebra would be large enough to capture quantum effects that escape ordinary formal deformation quantisation.
We present an exact two-particle solution of the Currie-Hill equations of Predictive Relativistic Mechanics in $1 + 1$ dimensional Minkowski space. The instantaneous accelerations are given in terms of elementary functions depending on the relative particle position and velocities. The general solution of the equations of motion is given and by studying the global phase space of this system it is shown that this is a subspace of the full kinematic phase space.