The minimal length uncertainty and the nonextensive thermodynamics


Abstract in English

In this paper, we study the thermodynamics of quantum harmonic oscillator in the Tsallis framework and in the presence of a minimal length uncertainty. The existence of the minimal length is motivated by various theories such as string theory, loop quantum gravity, and black-hole physics. We analytically obtain the partition function, probability function, internal energy, and the specific heat capacity of the vibrational quantum system for $1<q<frac{3}{2}$ and compare the results with those of Tsallis and Boltzmann-Gibbs statistics without the minimal length scale.

Download