No Arabic abstract
This paper describes a framework for modeling the interface between perception and memory on the algorithmic level of analysis. It is consistent with phenomena associated with many different brain regions. These include view-dependence (and invariance) effects in visual psychophysics and inferotemporal cortex physiology, as well as episodic memory recall interference effects associated with the medial temporal lobe. The perspective developed here relies on a novel interpretation of Hubel and Wiesels conjecture for how receptive fields tuned to complex objects, and invariant to details, could be achieved. It complements existing accounts of two-speed learning systems in neocortex and hippocampus (e.g., McClelland et al. 1995) while significantly expanding their scope to encompass a unified view of the entire pathway from V1 to hippocampus.
There are several indications that brain is organized not on a basis of individual unreliable neurons, but on a micro-circuital scale providing Lego blocks employed to create complex architectures. At such an intermediate scale, the firing activity in the microcircuits is governed by collective effects emerging by the background noise soliciting spontaneous firing, the degree of mutual connections between the neurons, and the topology of the connections. We compare spontaneous firing activity of small populations of neurons adhering to an engineered scaffold with simulations of biologically plausible CMOS artificial neuron populations whose spontaneous activity is ignited by tailored background noise. We provide a full set of flexible and low-power consuming silicon blocks including neurons, excitatory and inhibitory synapses, and both white and pink noise generators for spontaneous firing activation. We achieve a comparable degree of correlation of the firing activity of the biological neurons by controlling the kind and the number of connection among the silicon neurons. The correlation between groups of neurons, organized as a ring of four distinct populations connected by the equivalent of interneurons, is triggered more effectively by adding multiple synapses to the connections than increasing the number of independent point-to-point connections. The comparison between the biological and the artificial systems suggests that a considerable number of synapses is active also in biological populations adhering to engineered scaffolds.
Spiking neural networks (SNNs) has attracted much attention due to its great potential of modeling time-dependent signals. The firing rate of spiking neurons is decided by control rate which is fixed manually in advance, and thus, whether the firing rate is adequate for modeling actual time series relies on fortune. Though it is demanded to have an adaptive control rate, it is a non-trivial task because the control rate and the connection weights learned during the training process are usually entangled. In this paper, we show that the firing rate is related to the eigenvalue of the spike generation function. Inspired by this insight, by enabling the spike generation function to have adaptable eigenvalues rather than parametric control rates, we develop the Bifurcation Spiking Neural Network (BSNN), which has an adaptive firing rate and is insensitive to the setting of control rates. Experiments validate the effectiveness of BSNN on a broad range of tasks, showing that BSNN achieves superior performance to existing SNNs and is robust to the setting of control rates.
Sensory predictions by the brain in all modalities take place as a result of bottom-up and top-down connections both in the neocortex and between the neocortex and the thalamus. The bottom-up connections in the cortex are responsible for learning, pattern recognition, and object classification, and have been widely modelled using artificial neural networks (ANNs). Here, we present a neural network architecture modelled on the top-down corticothalamic connections and the behaviour of the thalamus: a corticothalamic neural network (CTNN), consisting of an auto-encoder connected to a difference engine with a threshold. We demonstrate that the CTNN is input agnostic, multi-modal, robust during partial occlusion of one or more sensory inputs, and has significantly higher processing efficiency than other predictive coding models, proportional to the number of sequentially similar inputs in a sequence. This increased efficiency could be highly significant in more complex implementations of this architecture, where the predictive nature of the cortex will allow most of the incoming data to be discarded.
Artificial neural networks have diverged far from their early inspiration in neurology. In spite of their technological and commercial success, they have several shortcomings, most notably the need for a large number of training examples and the resulting computation resources required for iterative learning. Here we describe an approach to neurological network simulation, both architectural and algorithmic, that adheres more closely to established biological principles and overcomes some of the shortcomings of conventional networks.
A developmental disorder that severely damages communicative and social functions, the Autism Spectrum Disorder (ASD) also presents aspects related to mental rigidity, repetitive behavior, and difficulty in abstract reasoning. More, imbalances between excitatory and inhibitory brain states, in addition to cortical connectivity disruptions, are at the source of the autistic behavior. Our main goal consists in unveiling the way by which these local excitatory imbalances and/or long brain connections disruptions are linked to the above mentioned cognitive features. We developed a theoretical model based on Self-Organizing Maps (SOM), where a three-level artificial neural network qualitatively incorporates these kinds of alterations observed in brains of patients with ASD. Computational simulations of our model indicate that high excitatory states or long distance under-connectivity are at the origins of cognitive alterations, as difficulty in categorization and mental rigidity. More specifically, the enlargement of excitatory synaptic reach areas in a cortical map development conducts to low categorization (over-selectivity) and poor concepts formation. And, both the over-strengthening of local excitatory synapses and the long distance under-connectivity, although through distinct mechanisms, contribute to impaired categorization (under-selectivity) and mental rigidity. Our results indicate how, together, both local and global brain connectivity alterations give rise to spoiled cortical structures in distinct ways and in distinct cortical areas. These alterations would disrupt the codification of sensory stimuli, the representation of concepts and, thus, the process of categorization - by this way imposing serious limits to the mental flexibility and to the capacity of generalization in the autistic reasoning.