Do you want to publish a course? Click here

Evaluating Hive and Spark SQL with BigBench

102   0   0.0 ( 0 )
 Added by Todor Ivanov
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

The objective of this work was to utilize BigBench [1] as a Big Data benchmark and evaluate and compare two processing engines: MapReduce [2] and Spark [3]. MapReduce is the established engine for processing data on Hadoop. Spark is a popular alternative engine that promises faster processing times than the established MapReduce engine. BigBench was chosen for this comparison because it is the first end-to-end analytics Big Data benchmark and it is currently under public review as TPCx-BB [4]. One of our goals was to evaluate the benchmark by performing various scalability tests and validate that it is able to stress test the processing engines. First, we analyzed the steps necessary to execute the available MapReduce implementation of BigBench [1] on Spark. Then, all the 30 BigBench queries were executed on MapReduce/Hive with different scale factors in order to see how the performance changes with the increase of the data size. Next, the group of HiveQL queries were executed on Spark SQL and compared with their respective Hive runtimes. This report gives a detailed overview on how to setup an experimental Hadoop cluster and execute BigBench on both Hive and Spark SQL. It provides the absolute times for all experiments preformed for different scale factors as well as query results which can be used to validate correct benchmark execution. Additionally, multiple issues and workarounds were encountered and solved during our work. An evaluation of the resource utilization (CPU, memory, disk and network usage) of a subset of representative BigBench queries is presented to illustrate the behavior of the different query groups on both processing engines. Last but not least it is important to mention that larger parts of this report are taken from the master thesis of Max-Georg Beer, entitled Evaluation of BigBench on Apache Spark Compared to MapReduce [5].



rate research

Read More

The need for modern data analytics to combine relational, procedural, and map-reduce-style functional processing is widely recognized. State-of-the-art systems like Spark have added SQL front-ends and relational query optimization, which promise an increase in expressiveness and performance. But how good are these extensions at extracting high performance from modern hardware platforms? While Spark has made impressive progress, we show that for relational workloads, there is still a significant gap compared with best-of-breed query engines. And when stepping outside of the relational world, query optimization techniques are ineffective if large parts of a computation have to be treated as user-defined functions (UDFs). We present Flare: a new back-end for Spark that brings performance closer to the best SQL engines, without giving up the added expressiveness of Spark. We demonstrate order of magnitude speedups both for relational workloads such as TPC-H, as well as for a range of machine learning kernels that combine relational and iterative functional processing. Flare achieves these results through (1) compilation to native code, (2) replacing parts of the Spark runtime system, and (3) extending the scope of optimization and code generation to large classes of UDFs.
We propose TRANSMUT-Spark, a tool that automates the mutation testing process of Big Data processing code within Spark programs. Apache Spark is an engine for Big Data Processing. It hides the complexity inherent to Big Data parallel and distributed programming and processing through built-in functions, underlying parallel processes, and data management strategies. Nonetheless, programmers must cleverly combine these functions within programs and guide the engine to use the right data management strategies to exploit the large number of computational resources required by Big Data processing and avoid substantial production losses. Many programming details in data processing code within Spark programs are prone to false statements that need to be correctly and automatically tested. This paper explores the application of mutation testing in Spark programs, a fault-based testing technique that relies on fault simulation to evaluate and design test sets. The paper introduces the TRANSMUT-Spark solution for testing Spark programs. TRANSMUT-Spark automates the most laborious steps of the process and fully executes the mutation testing process. The paper describes how the tool automates the mutants generation, test execution, and adequacy analysis phases of mutation testing with TRANSMUT-Spark. It also discusses the results of experiments that were carried out to validate the tool to argue its scope and limitations.
Geo-replication poses an inherent trade-off between low latency, high availability and strong consistency. While NoSQL databases favor low latency and high availability, relaxing consistency, more recent cloud databases favor strong consistency and ease of programming, while still providing high scalability. In this paper, we present Antidote SQL, a database system that allows application developers to relax SQL consistency when possible. Unlike NoSQL databases, our approach enforces primary key, foreign key and check SQL constraints even under relaxed consistency, which is sufficient for guaranteeing the correctness of many applications. To this end, we defined concurrency semantics for SQL constraints under relaxed consistency and show how to implement such semantics efficiently. For applications that require strict SQL consistency, Antidote SQL provides support for such semantics at the cost of requiring coordination among replicas.
The rule-based OWL reasoning is to compute the deductive closure of an ontology by applying RDF/RDFS and OWL entailment rules. The performance of the rule-based OWL reasoning is often sensitive to the rule execution order. In this paper, we present an approach to enhancing the performance of the rule-based OWL reasoning on Spark based on a locally optimal executable strategy. Firstly, we divide all rules (27 in total) into four main classes, namely, SPO rules (5 rules), type rules (7 rules), sameAs rules (7 rules), and schema rules (8 rules) since, as we investigated, those triples corresponding to the first three classes of rules are overwhelming (e.g., over 99% in the LUBM dataset) in our practical world. Secondly, based on the interdependence among those entailment rules in each class, we pick out an optimal rule executable order of each class and then combine them into a new rule execution order of all rules. Finally, we implement the new rule execution order on Spark in a prototype called RORS. The experimental results show that the running time of RORS is improved by about 30% as compared to Kim & Parks algorithm (2015) using the LUBM200 (27.6 million triples).
We consider the problem of finding equivalent minimal-size reformulations of SQL queries in presence of embedded dependencies [1]. Our focus is on select-project-join (SPJ) queries with equality comparisons, also known as safe conjunctive (CQ) queries, possibly with grouping and aggregation. For SPJ queries, the semantics of the SQL standard treat query answers as multisets (a.k.a. bags), whereas the stored relations may be treated either as sets, which is called bag-set semantics for query evaluation, or as bags, which is called bag semantics. (Under set semantics, both query answers and stored relations are treated as sets.) In the context of the above Query-Reformulation Problem, we develop a comprehensive framework for equivalence of CQ queries under bag and bag-set semantics in presence of embedded dependencies, and make a number of conceptual and technical contributions. Specifically, we develop equivalence tests for CQ queries in presence of arbitrary sets of embedded dependencies under bag and bag-set semantics, under the condition that chase [9] under set semantics (set-chase) on the inputs terminates. We also present equivalence tests for aggregate CQ queries in presence of embedded dependencies. We use our equivalence tests to develop sound and complete (whenever set-chase on the inputs terminates) algorithms for solving instances of the Query-Reformulation Problem with CQ queries under each of bag and bag-set semantics, as well as for instances of the problem with aggregate queries.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا