Do you want to publish a course? Click here

Seismic indices -- a deep look inside evolved stars

185   0   0.0 ( 0 )
 Added by Benoit Mosser
 Publication date 2015
  fields Physics
and research's language is English
 Authors Benoit Mosser




Ask ChatGPT about the research

Independent of stellar modelling, global seismic parameters of red giants provide unique information on the individual stellar properties as well as on stellar evolution. They allow us to measure key stellar parameters, such as the stellar mass and radius, or to derive the distance of field stars. Furthermore, oscillations with a mixed character directly probe the physical conditions in the stellar core. Here, we explain how very precise seismic indices are obtained, and how they can be used for monitoring stellar evolution and performing Galactic archeology.



rate research

Read More

Inspired by the so appealing example of red giants, where going from a handful of stars to thousands revealed the structure of the eigenspectrum, we inspected a large homogeneous set of around 1860 {delta} Scuti stars observed with CoRoT. This unique data set reveals a common regular pattern which appears to be in agreement with island modes featured by theoretical non-perturbative treatments of fast rotation. The comparison of these data with models and linear stability calculations suggests that spectra can be fruitfully characterized to first order by a few parameters which might play the role of seismic indices for {delta} Scuti stars, as {Delta u} and { u_{max}} do for red giants. The existence of this pattern offers an observational support for guiding further theoretical works on fast rotation. It also provides a framework for further investigation of the observational material collected by CoRoT and Kepler. Finally, it sketches out the perspective of using {delta} Scuti stars pulsations for ensemble asteroseismology.
134 - G. Dreau , B. Mosser , Y. Lebreton 2021
The space-borne missions CoRoT and Kepler opened up a new opportunity for better understanding stellar evolution by probing stellar interiors with unrivalled high-precision photometric data. Kepler has observed stellar oscillation for four years, which gave access to excellent frequency resolution that enables deciphering the oscillation spectrum of evolved red giant branch and asymptotic giant branch stars. The internal structure of stars in the upper parts of the red and asymptotic giant branches is poorly constrained, which makes the distinction between red and asymptotic giants difficult. We perform a thorough seismic analysis to address the physical conditions inside these stars and to distinguish them. We studied the oscillation mode properties of about 2.000 evolved giants in a model described by the asymptotic pressure-mode pattern of red giants, which includes the signature of the helium second-ionisation zone. We extracted the mode properties up to the degree l = 3 and investigated their dependence on stellar mass, metallicity, and evolutionary status. We identify a clear difference in the signature of the helium second-ionisation zone between red and asymptotic giants. We also detect a clear shortage of the energy of l = 1 modes after the core-He-burning phase. Furthermore, we note that the mode damping observed on the asymptotic giant branch is similar to that observed on the red giant branch. We highlight that the signature of the helium second-ionisation zone varies with stellar evolution. This provides us with a physical basis for distinguishing red giant branch stars from asymptotic giants. Here, our investigation of stellar oscillations allows us to constrain the physical processes and the key events that occur during the advanced stages of stellar evolution, with emphasis on the ascent along the asymptotic giant branch, including the asymptotic giant branch bump.
187 - Shyeh Tjing Loi 2021
It is thought that magnetic fields must be present in the interiors of stars to resolve certain discrepancies between theory and observation (e.g. angular momentum transport), but such fields are difficult to detect and characterise. Asteroseismology is a powerful technique for inferring the internal structures of stars by measuring their oscillation frequencies, and succeeds particularly with evolved stars, owing to their mixed modes, which are sensitive to the deep interior. The goal of this work is to present a phenomenological study of the combined effects of rotation and magnetism in evolved stars, where both are assumed weak enough that first-order perturbation theory applies, and we focus on the regime where Coriolis and Lorentz forces are comparable. Axisymmetric twisted-torus field configurations are used, which are confined to the core and allowed to be misaligned with respect to the rotation axis. Factors such as the field radius, topology and obliquity are examined. We observe that fields with finer-scale radial structure and/or smaller radial extent produce smaller contributions to the frequency shift. The interplay of rotation and magnetism is shown to be complex: we demonstrate that it is possible for nearly symmetric multiplets of apparently low multiplicity to arise even under a substantial field, which might falsely appear to rule out its presence. Our results suggest that proper modelling of rotation and magnetism, in a simultaneous fashion, may be required to draw robust conclusions about the existence/non-existence of a core magnetic field in any given object.
127 - Francisco Colomer 2009
High resolution maps of maser emission provide very detailed information on processes occurring in circumstellar envelopes of late-type stars. A particularly detailed picture of the innermost shells around AGB stars is provided by SiO masers. Considerable progress is being made to provide astrometrically aligned multi-transition simultaneous observations of these masers, which are needed to better constrain the models. In view of the large amount of high quality data available, models should now be developed to fully explain all maser characteristics together (spatial distribution, variability, etc). New generation instruments (VERA, VSOP-2), new observational techniques (frequency-phase transfer), and new models promise important improvements of our knowledge on this topic.
Evolved stars dominate galactic spectra, enrich the galactic medium, expand to change their planetary systems, eject winds of a complex nature, produce spectacular nebulae and illuminate them, and transfer material between binary companions. While doing this, they fill the HR diagram with diagnostic loops that write the story of late stellar evolution. Evolved stars sometimes release unfathomable amounts of energy in neutrinos, light, kinetic flow, and gravitational waves. During these late-life times, stars evolve complexly, with expansion, convection, mixing, pulsation, mass loss. Some processes have virtually no spatial symmetries, and are poorly addressed with low-resolution measurements and analysis. Even a simple question as how to model mass loss resists solution. However, new methods offer increasingly diagnostic tools. Astrometry reveals populations and groupings. Pulsations/oscillations support study of stellar interiors. Optical/radio interferometry enable 2-3d imagery of atmospheres and shells. Bright stars with rich molecular spectra and velocity fields are a ripe opportunity for imaging with high spatial and spectral resolution, giving insight into the physics and modeling of later stellar evolution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا