No Arabic abstract
A systematic investigation of the nuclear observables related to the triaxial degree of freedom is presented using the multi-quasiparticle triaxial projected shell model (TPSM) approach. These properties correspond to the observation of $gamma$-bands, chiral doublet bands and the wobbling mode. In the TPSM approach, $gamma$-bands are built on each quasiparticle configuration and it is demonstrated that some observations in high-spin spectroscopy that have remained unresolved for quite some time could be explained by considering $gamma$-bands based on two-quasiparticle configurations. It is shown in some Ce-, Nd- and Ge-isotopes that the two observed aligned or s-bands originate from the same intrinsic configuration with one of them as the $gamma$-band based on a two-quasiparticle configuration. In the present work, we have also performed a detailed study of $gamma$-bands observed up to the highest spin in Dysposium, Hafnium, Mercury and Uranium isotopes. Furthermore, several measurements related to chiral symmetry breaking and wobbling motion have been reported recently. These phenomena, which are possible only for triaxial nuclei, have been investigated using the TPSM approach. It is shown that doublet bands observed in lighter odd-odd Cs-isotopes can be considered as candidates for chiral symmetry breaking. Transverse wobbling motion recently observed in $^{135}$Pr has also been investigated and it is shown that TPSM approach provides a reasonable description of the measured properties.
The static quadrupole moments (SQMs) of nuclear chiral doublet bands are investigated for the first time taking the particle-hole configuration $pi(1h_{11/2}) otimes u(1h_{11/2})^{-1}$ with triaxial deformation parameters in the range $260^circ leq gamma leq 270^circ$ as examples. The behavior of the SQM as a function of spin $I$ is illustrated by analyzing the components of the total angular momentum. It is found that in the region of chiral vibrations the SQMs of doublet bands are strongly varying with $I$, whereas in the region of static chirality the SQMs of doublet bands are almost constant. Hence, the measurement of SQMs provides a new criterion for distinguishing the modes of nuclear chirality. Moreover, in the high-spin region the SQMs can be approximated by an analytic formula with a proportionality to $cosgamma$ for both doublet bands. This provides a way to extract experimentally the triaxial deformation parameter $gamma$ for chiral bands from the measured SQMs.
It is argued that the experimental criteria recently used to assign wobbling nature to low-spin bands in several nuclei are insufficient and risky. New experimental data involving angular distribution and linear polarization measurements on an excited band in 187Au, previously interpreted as longitudinal wobbling, are presented. The new data show that the linking transitions have dominant magnetic nature and exclude the wobbling interpretation.
Rotation of triaxially deformed nucleus has been an interesting subject in the study of nuclear structure. In the present series of work, we investigate wobbling motion and chiral rotation by employing the microscopic framework of angular-momentum projection from cranked triaxially deformed mean-field states. In this first part the wobbling motion is studied in detail. The consequences of the three dimensional cranking are investigated. It is demonstrated that the multiple wobbling rotational bands naturally appear as a result of fully microscopic calculation. They have the characteristic properties, that are expected from the macroscopic triaxial-rotor model or the phenomenological particle-triaxial-rotor model, although quantitative agreement with the existing data is not achieved. It is also found that the excitation spectrum reflects dynamics of the angular-momentum vector in the intrinsic frame of the mean-field (transverse vs. longitudinal wobbling). The results obtained by using the Woods-Saxon potential and the schematic separable interaction are mainly discussed, while some results with the Gogny D1S interaction are also presented.
The intraband electromagnetic transitions in the framework of collective Hamiltonian for chiral and wobbling modes are calculated. By going beyond the mean field approximation on the orientations of rotational axis, the collective Hamiltonian provides the descriptions on both yrast band and collective excitation bands. For a system with one $h_{11/2}$ proton particle and one $h_{11/2}$ neutron hole coupled to a triaxial rotor ($gamma=-30^circ$), the intraband electromagnetic transitions given by the one-dimensional and two-dimensional collective Hamiltonian are compared to the results by the tilted axis cranking approach and particle rotor model. Compared with the tilted axis cranking approach, the electromagnetic transitions given by the collective Hamiltonian have a better agreement with those by the particle rotor model, due to the consideration of the quantum fluctuations.
The interpretation of the recently reported low-lying excited bands in $gamma$-soft odd-mass nuclei as wobbling bands is examined in terms of the interacting boson-fermion model that is based on the universal nuclear energy density functional. The predicted mixing ratios of the $Delta{I}=1$ electric quadrupole ($E2$) to magnetic dipole ($M1$) transition rates between yrast bands and those yrare bands previously interpreted as wobbling bands in $^{135}$Pr, $^{133}$La, $^{127}$Xe, and $^{105}$Pd nuclei are consistently smaller in magnitude than the experimental values on which the wobbling interpretation is based. These calculated mixing ratios indicate the predominant $M1$ character of the transitions from the yrare bands under consideration to the yrast bands, being in agreement with the new experimental data, which involve both the angular distribution and linear polarization measurements. The earlier wobbling assignments are severely questioned.