Gaseous time projection chambers for rare event detection: Results from the T-REX project. I. Double beta decay


Abstract in English

As part of the T-REX project, a number of R&D and prototyping activities have been carried out during the last years to explore the applicability of gaseous Micromegas-read TPCs in rare event searches like double beta decay (DBD), axion research and low-mass WIMP searches. In both this and its companion paper, we compile the main results of the project and give an outlook of application prospects for this detection technique. While in the companion paper we focus on axions and WIMPs, in this paper we focus on the results regarding the measurement of the DBD of $^{136}$Xe in a high pressure Xe (HPXe) TPC. Particularly relevant are the results obtained in Xe + TMA mixtures with microbulk Micromegas, showing very promising results in terms of gain, stability of operation, and energy resolution at pressures up to 10 bar. TMA at levels of $sim$1% reduces electron diffusion by a factor of 10 with respect to pure Xe, improving the quality of the topological pattern, with a positive impact on the discrimination capability. Operation with a medium size prototype (30 cm diameter and 38 cm drift) of 1 kg of Xe at 10 bar in the fiducial volumen has allowed to test the detection concept in realistic experimental conditions. Microbulk Micromegas are able to image the DBD ionization signature with high quality while, at the same time, measuring its energy deposition with a resolution of at least $sim$3% FWHM @ Q$_{betabeta}$, and probably down to $sim$1% FWHM. In addition, first results on the topological signature information show promising background discrimination capabilities out of reach of other experimental implementations. Moreover, microbulk Micromegas have very low levels of intrinsic radioactivity, and offer cost-effective scaling-up options. All these results demonstrate that Micromegas-read HPXe TPC is a very competitive technique for the next generation DBD experiments.

Download